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Summary. — The interaction of two charged particles beth with each other (via
Lienard-Wiechert retarded potentials) and with the wiggler field of an FEL
structure, along which they are launched, is computed by means of the numerical
integration of the relativistic motion equations, taking also an incoming laser wave
into account. The bunching effect characterizing the eollective behaviour of an
eleetron beam in FEL.like fields is simulated by assuming one of the particles to be
a suitable maerccharge.

PACS 4255 Th ~ Free electron lasers.
PACS 5265 — Plasma simulation.

1, — Iniroduction.

As is well known, the relativistic Hamiltonian[1] of a system of charged particles
interacting with each other and with external electromagnetic fields may be written
only in the limiting case of a single particle in external fields and, because of the
impossibility of considering retarded interactions in the case of a system of particles
in non-relativistic motion with respect to their centre of mass (which is allowed,
however, to be endowed with a relativistic veloeity). Breit's Hamiltonian (derived
from Darwin’s Lagrangian[2,8]), is the most practical model eurrently employed for
atomic systems.

Although some progress was indeed performed[2,4], the very possibility of
applying relativity (and even guantum mechanics) is strongly limited, as shown in
any textbook of relativistic electrodynamies{8], the main difficulty consisting in the
non-Lorentz-invariant character of the interaction terms, based on simultaneity,
which is not relativistically invariant[5].

A quite easier task is the study of the so-called undulators, where high-energy
electrons interact with an undulated transverse magnetic field. No external electrie
fieid is present and the electric interaction of charged particles with each other (ie
collective phenomenon) is negligible. In these conditions, the relativistic motion
equation of a charge may be analitically integrated. Complete solutions of the speetral
emission from a single particle were obtained in ref.[6] even for divection diverging
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24 R. GIOVANELLI

from the undulator axis. This treatment, however, is of limited interest in cases when
collective phenomena in an FEL structure must be taken into acecunt.

Cwrrent papers describing the physies of FEL in Raman regime (i.e. for high
beam currents) employ the Hamiltonian approach{7), and must therefore remain
limited to non-relativistic motions in the centre of mass system, thus requiring, for
instance, an external magnetic field low enough to deflect electrons with
non-relativistic transversal velocities. Renouncing here to tackle the heavy problem
of the many-particle relativistic Hamiltonian, we shall describe the eleetron motion in
an FEL geometry by means of a model based on non-Hamiltonian relativistic
dynamies, considering both radiation damping and retarded interactions and making
use, therefore, of a treatment acceptable from the point of view of causality. Other
models propoesed for 3-D simulations of FEL laser physics [8] neglect retardation in
particle interactions.

The techniques employed in the numerieal simulations of free-electron lasers are
summarized in{9), where also the time-dependent simulations are included; but the
effects due to fast transient radiation interaction between charges are masked by the
use of Fourier transforms, applied to physical models where the electromagnetic-field
amplitude is supposed periodical with a poor frequency spectrum. Our main aim is to
consider here, by means of a numerieal approach, the evolution of a system composed
of two particles (one of which may be a macroparticle) interacting both with each
other and with external FEL-like fields. While such a model turns out to give
information of quite general interest on FEL dynamics, the extension to a system of
many electrons, taking mutual perturbations into aceount, does not appear to be of
practical interest for numerical applications. In sect. 2 of the present paper, the
mathematical formulation of the particle motion and field radiation equations is
presented. In sect. 3, the conditions to obtain simplified equations are deduced. In
sect. 4, numerical results are given for two charged particles interacting through
their electromagnetic radiation. The deseription of the numerical method employed
here, and of partially analytical equivalent approach ave deferred, respectively, to
appendices A and B.

2. — Physical model—eleetron motion and radiation fields.

We assume a coordinate system where & is the wiggler axis along which the
particle is launched, and Z the divection of the wiggler magnetic fleld (fig. 1).

The Lorentz equations for the electron motion may be written (in Gaussian units)
in the form

o dp pxB1
2.1) T E+ e | T
dx P
29 = o —
©2) £5 % T my
dy e
(2.3) == = ——p ki,
At nFefyT

where y = {1 — (-U/c)"“’]“” ®and e is the electron rest mass.
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Fig. 1. - EJ“EL geometry. The undulated thick line represents a particle orbit. The wiggler
magnetic field is represented by the shaded areas.

The force F includes both the external and mutual forces computed from
the sources at the previous time "=t - R/c.

The electric and magnetic field, respectively generated at the point Plx, ) by a
particle of charge «¢» placed at P'(x’, '), may be written{10] in the form

(-~ BY1-3%) . . .
2.4) Elx, t) = ¢ ——& + f’,R i x {7 — P x p}1,

Z:IRL‘ cy
(2.5) Blx, ty=n x Ex, 1),

where f=uvfe, y=0 -, B=x-RE")), E= df/di and 7 =R/R is the unit
vector along B = (x' — x). The geometry is represented in fig. 2. The fields E and I
are represented in fig. 3.

The first term of eq. (2.4), generally called «velocity field», is independent of the
acceleration f§, while the second one, called «acceleration field», depends linearly on .

The velocity fields are conservative, and fall off as R ~7, whereas the acceleration
ﬁel'}lgs {mve a typically radiative nature with vectors transverse to R and vavying
as .

A R
€ g = e PP (1)

Fig. 2. - The_ point charge (¢) at the position r(2’), with velocity ¢f(t "} has a distance R(¢"} from
the observation point P, (x, ). The direction #{{'} = R/R changes with the previous position of
the point charge.
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26 . GIOVANELLI

N >

Fig. 3. - In all the points P of the plane Gr, ») a charge — ¢, with veloeity v = ¢f(£") parallel to th'e
F-axis, has a distance R(f') from the origin O where the source point charge, alse equal to — ¢, is
placed. Thin lines represent the force F = ~c(fi + f X B), where £ and B are the felds
generated by the charge placed in O. Thick lines represent the field of the electrie component
of F. Theparticle moves in & transverse magnetic field B, = 5000 gauss.

3. — Particular radiation cases.

ay By introducing, as shown in fig. 4a) a vector r(f’} representing the ])os§tion
of the emitting charge and the unit veetor it along the fixed position vector x of the
observing point P, it may be shown that, in the particular case of the fields ol?selwreci
at large distance from an emitting electron {and also when the vector Rt )—see
fig. 4b)—is almost parallel to n), the distance R{t') between the emitting and the

Fig. 4. — «) The observation point P, is assumed to be very far from the region where the
raciztion oceurs. We may approximate R(t') = a — n-p(t’), where x is the distance betwee.n the
origin O and the observation point P,, and r{i ') is the position of the radiation chaa‘gﬂe relative to
0. The direction it of OF is fixed in space. b) When |r| is comparable to £ but r and i are almost
collinear we may again approximate RGE') =& — i-r{f) as in a).
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observing point may be approximated (fig. 4a)) as
8.1 R DV=a—n-ri'),

so that the energy radiated per unit solid angle and per unit frequency interval,
df{ew, 1)/d0 may be given in a simplified form in terms of an integral over the particle
trajectory [3]

(3.2)

dlw, 1) 2,2

G 5y | [ e g e ol s /el

Although not explicitly dependent on E, such an expression may be shown to
vanish when f= 0. An important feature of eq. (3.2) is seen to be its independence
from time,

This approximation, however, cannot be accepted when the field is evaluated
close to the emitting charge, far from the direction of motion (the beam axis). We
represent in fig. 4a} and ) two cases differing only for the choice of the coordinates
origin 0.

The first one is that, usually considered, characterized by an observation point P
very far from the radiation region; the second one is the typical case of an FEL,
where the size of the source (or the order of some meters) is not small in comparison
with the distance from the observation point.

The integral (3.2), performed along the particle trajectory in terms of the
laboratory time, describes the final radiation spectrum, thus requiring the previous
knowledge of the trajectory itself: eq. (3.2) may therefore be employed only in near-
stationary eonditions and does not supply the phases of radiation harmonics.

Equation (3.2) does not allow therefore the analysis of instability phenomena due
to the radiative-particle interactions.

In the resonant case of the coherent emission of a beam consisting of a series of
bunches spaced at a distance equal to the wavelength A of the emitted radiation, the
knowledge of the radiative phase is not necessary, and eq. (3.2) gives the required
information about the harmonic amplitudes. In transient phenomena, however,
eq. (3.2} is not able to give the phase of the emitted radiation and cannot correctly
compose the harmonic amplitudes.

In general, therefore, egs. (24) and (2.5) must be employed in their complete
form. We can verify the limits of the approximation (3.2} considering the simplified
case of two interacting charges in FEL geometry, where all the electrons move along
the FEL axis X with a straight average trajectory, oscillating back and forth
iransverse to it with amplitude g, = \/é-aw [lkwy). Let Py be the position at the
time ¢ of a charge moving along ¥ with the mean velocity V = gc (fig. 5), and P, the
position of the other charge assumed to move with the same velocity, at the same
time ¢. Let us assume the position of the first particle as the origin of a suitable
reference frame, where the position of the second particle is individuated in polar
form by the distance d (= Py P,) and by the angle « between the vector Py P; and — &.
Let us define the position Py (at the previous time ¢') of the first charge such that its
radiation hits the other particie at the position P, at the time ¢, under the assumption
that both average trajectories are rectilinear.

The position of Py shall be defined by the distance R between the radiation point
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Fig. 5. — Plot vs. = of the distance R at the previous time ¢’ = { — R/c for different values of the
average veloeity V = fge. Above the indicated cross, each diagram satisfies condition (3.1).
P§ and the receiving point P, obtained from the relation

R¥=d*+ p*R* - 2d3R cos a,

that leads to

R —feosa+[1— g sin’ o]
d 1-p° )

As shown in fig. 5, the distance R turns out to be not much larger than d for
a < =/2. If we assume for d the values )y, the approximation (3.1) shall require that:

R/ Yas /21~ For an FEL with By = 5000 Gauss and Ay = 2 cm, condition (3.2) is
satisfied only on the side of each diagram of fig. 5 above the indicated cross.

3.3)

b) If the electromagnetic (optical) fields are deseribed by the vector potential
A[3], we may write, disregarding the electric potential ¢, the wave equation

8.4) VEA—? = = = ==

where J, is the electron beam transverse-current density. Ignoring second
derivatives and squares of first derivatives of the function A (supposed a slowly
varying function[7]), a fivst-order partial differential equation is obtained from
eq. (34), that leads to solutions which do not depend on the pzeweus time t'. No
transient disturbance can therefore be described.

In both cases, deseribed, respectively, in @) and b) 1t 1s seen, m conclusion,
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that disregarding the time-dependence of the radiated fields makes it impossible
to detect any transient and/or localized phenomenon.

4. — Numerical results for itwo interacting charged particles,

The radiative interaction between the charges of a beam, leading fo a trajectory
modification, affects, sinee the very beginning, the acceleration and therefore the
emission of irradiated charges.

Let us consider, for the moment, the radiating part alone of the fields (2.4) and
(2.5). As is well known, the radiation is mainly contained in a cone of aperture 1/y.
Let two charges 1 and 2 (charge 2 being ahead with respect to charge 1) tray eE along
the x-axis with velocity fic, at mutual distance 34, where 2y, = Jy (1 + af )/2v" is the

radiation FEL wavelength, 7, the FEL wiggler wavelength, ayw = ebyw /(\/‘A“ me®)
the interaction strength due to the wiggler magnetic field By and ky = 2-7/%y is the
wavenumber corrvesponding to the wiggler wavelength Ayw. In t.hese conditions,
resonance is possible with a radiation (with wavelength 7, ) propagation along x. As
the backward charge radiation is negligible (backward electric field radiated by 2 to 1
is: B e = — Je-£9/(2c3,,)), only particle 2 is affected by the radiated fields. 1f
particle 2 is reached by the radiation (emitted by 1) at ¢ = 0, such a radiation must be
sent by particle 1 at { = ~ Ay /e. Both radiating particles are taken to be in a wiggler
position where the magnetic field By = 2- By sin(byw) is maximum.
The electric field radiated by 1 is given by the radiative part of {2.4)

where the accelevation ' is given by
V= — gerBy flmye).
The corresponding magnetic field is obviously
BLi=zE 1“1:;-
The acceleration of particle 2 is given by

.U" mﬁlu. f:,jmjjl‘:u_:’

neeet /.\\'

where the term added to §' is determined by the fields B and Bl It must be
observed that this correction is generally small with respect to _ﬂ.‘u'd hut of opposite
sign.

The radiative interaction acting all along the entire trajectory of particie 2 is the
actual cause of the amplification process.

The total fields acting along the trajectories of mutualiy interacting electrons are
found by adding to the radiation fields of all the electrons of the beam (computed by
means of the Lienard-Wiechert retarded potentials of the individual electrons) the
incoming external laser fields[11].

The modulating external laser fields, with their transverse components, produce a
longitudinal ponderomotive force[12], resulting from the beating of the laser fields
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Fig. 6. - ) Force exerted on a single charge, initially placed at P, by a macrocharge of 10°
electrons placed at Py, being Py P, equal to 1-10~"em. The kinetic energy of the charges is equal
to 18 MeV. It is seen that the foree, initially mainly in the forward direction, becomes basically
symmetric when the bunching distance fia; == A;, = 1.101-10"%*cm is reached. The maximum
wiggler magnetic field is taken to be B, = 5000 G. The resenant-laser wave electric field is taken
to be 1770 statvolt/em. b Foree due to the resonant-laser fields aeting on 2 single electron,
initially in P;, with the same parameters as ir a). In the two cases the forces are represented in
the same arbitrary units. ¢) Force exerted on 2 single charge by a macrocharge of 108 electrons.
In this case the kinetic energy of the charges is equal to 7.48 MeV. The resonant-laser wave
electric field is taken to be 10% statvolt/em, a value too high used only for numerical simulation. d)
Foree due to the resonant-laser field acting on 2 single electron initially, in Py, with the same
parameters as in ¢).

with the wiggler field, which, as shown in fig. 6a) modulates the axial velocily of the
electrons (phase bunching).

The force on a single electron due to the radiation fields of a macroparticle
(which we assume here to be composed of 2 bunch of 10° electrons corresponding to a
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Fig. 7. - E\,-component of the radiation emitted by a single charge without perturbation of the
other charges (@)) and taking account of the influence of the charges (10®electrons) of the
following buneh (b)). B, is vepresented in arbitrary units.

a)

__“:xn—-—-

beam cwrrent of 450A with the distance between bunches g, = 0.00lcm) is
shown in fig. 6b). These numerical examples are suggested by the FEL amplifier
experiments carried out at Los Alamos National Laboratory using a high-power
((80 -+ 900) MW)CO, laser and a r.f. linac[138], where, with an input laser signal of
750 MW (corresponding to an electric field of 1772.5 statvelt /em for a laser beam
cross-section of 1em?), more than 50% of the electrons of the beam were found to be
trapped by the ponderomotive wave and decelerated.

The details of the numerical code employed in the present paper are deferred

-xllll lL o nt IIII‘[ } . CN AN
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¥ig. 8. ~ a) Spectral analysis of the radiation emitted by an unperturbed charge passing through
a wiggler during the time of 54-10"% s, The particle is launched with a kinetic energy of
18.71 MeV into a wiggler with Ay = 2em and B, = 5000 G. b) The same for a charge perturbed by
& macrocharge of 10° electrons placed at P,. The distance PP, i3 initially equal to
3-10"%em,


Silvia

Silvia

Silvia

Silvia


32 k. GIOVANELLI

to appendix A, while those of an alternative semi-numerical approach are given
in appendix B.

In fig. 7 we represent the £, component of the radiation emitted by a single
charge both when perturbed by the presence of a second macrocharge (0)) and when
such a second charge is absent («)). The Fourier analysis of &, (fig. 8) shows the effect
of the perturbation due to a macrocharge of 10° electrons on a single electron at a
distance less than A2 (fig. 85)). This diagram must be compared with that of an
unperturbed electron (fig. 8uw)).

5. — Conclusions.

In the current literature[9] the approach to FELs is based on a far-field
approximation, wherve the fields, whose periodicity is dictated by the FEL geometry,
is due to non-localized sources, and only the average velocity of moving charges is
taken into consideration. Such an approach allows a description based on Fourier
analysis, where all retardation effects in particle radiative interactions are neglected:
any perturbation loecalized in time and space is therefore exeluded, and no radiative
instability may be taken into account. The near-field contributions are tentatively
introduced, in ref.[8], for the one-electron off-axis radiation. The linear—undulator
spectral brightness at a different observer/undulator distance is obtained from the
S-Luce code that deals with a direct integration of the Lienard-Wiechert potential,
and the electron trajectories are obtained from a Runge-Kutta integration. It must be
noticed that, in this approach, no vadiative interaction between charges is
considered.

In the present paper, the electron interaction is numerically analysed by means of
the relativistic (non-quantum) equations of motion and radiation, Our basie result
consists in the Fourier analysis of the field emitted by a test charge moving in an
FEL geometry. When the charge is not influenced by other particles of the beam, a
normal ensemble of odd harmonies is seen, whose amplitude monotonously decreases
with increasing frequency according to the value of the interaction strength aw
(fig. Sa)).

When, on the other hand, a perturbation due to another particle of the beam is
taken into account (in the considered ecase a macrocharge of 10° electrons has been
placed at a distance less than i from the test charge) many suppiementary har-
monics and a considerable broadening of spectral lines is evidenced by numericai
analysis (fig. 8b)).

The radiation emitted by a single charge shows in a simple way the distortion of
the wave front outside the direction of the average particle motion. The main
conclusion is that, when high-current densities are employed for the electron beam
and high-radiation powers ave injected along the beam, both instabilities and non-
linear features make it difficult to classify the FELs as real lasers. Both the beam
coherence and its collimation, in fact, diverge significantly from the conditions
usually indicating a laser mechanism: the emitted radiation in particular is
appreciably coherent only in a very narrow solid zangle around the beam axis. This
behaviour was also evidenced in ref.[14-16] in low-density relativistic electron beam
when transverse spatial inhomogeneities in the wiggler field bring to a chaotic
electron motion.

Devices able to generate electromagnetic-radiation beams with a low-divergence
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angle and endowed with a high degree of coherence shall probably require new
technological solutions, typically based on sophisticated systems of wave guides.

Thanks are due to Prof. C. Belli (Politeenico di Milano) for helpful discussions, and
to Prof. A. Orefice (Universita di Milano) for his fundamental help during the genesis
of the wark,

APPENDIX A

Numerieal method.

The numerieal computation of electron trajectories is performed by caleulating the
values of electric and magnetic fields at the beginning of each step and keeping them
constant aleng it.

We chose the well-known Boris mover method[17, 18] modifying it in such a way
to partition the electron orbits in acceptably small aves of different lengths. The
advancement step along the trajectories is fractioned in such a way to determine with
any wanted approximation, the point where an electromagnetic signal emitted by a
particle reaches the other one (see fig. 10). We shall call here «coneurrence point» the
position, along a particle trajectory, reached at time ¢ by the radiation emitied by the
other particle at the time ¢ ~ R/c.

In the numerical computation of both particle trajectories we take into aceount,
during the step preceding the first concurrence point, the only action of the wiggler
field and of a possible externally injected resonant radiation.

Successively, of cowrse, the full radiative-particle interaction is taken into
consideration,

The information needed to start the numerical integration consists of the initial
particle momentum and position.

In the usual application of the Boris method the two first-order differential
E'g,l;x}tivistic equations, to be integrated separately for each particle, are eqgs. (2.1) and

By the substitntion

(A1) u=plm,
these equations are replaced by the finite-difference equations for u*"'/*
ur:~:~l/2_ uuml/:l (H'Hl/ﬂ _;_Hnwi/:l)

A2 = T = L = #
S kY m |EF 2oy &

The particle position vector X at the (n + 1)-th step is obtained from the n-th one
according to

nt 172
(A3) DR (R LS (R -t

IR V5] ’
{

“,hel.e _},u +1/2 .. [l + (EH +1/2 /6}2]1/2.
This step produces a second-order ervor with respect to A /¢ in the particle orbit.

3 = 11 Nuwove Cimente T
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Fig. 9.

The numerical time advancement procedure is shown in fig. 9, together with the
time centring. The initial econditions must be transformed, as a first step, to fit the
numerical flow: this is obtained by pushing u(0) back to u(-At/2), using he force F
caleulated at £ =0 and X(0).

The usual Borvis method[17,18] separates the eleetrie and magnetie forces
introducing inte (A.2) the substitutions:

(A4) u* M=y B A/2m,
(A.B) u M m yt + eE" At/2m.

It can then be seen that E" cancels entirvely, leaving

£ N € + - n
. = + xB".
(A.6) At 2mey” @ uT)xg

Equation (A.G) represents a rotation, around an axis parsllel to B, of the vector
u~ into the vector u ™ (having the same amplitude} by an angle

eB At
0= —2tg"" .
& ( 2mcr)
The magnetic field does not modify the amplitudes I~ | = |u*| = |[u"|.

The quantity y* is then obtained by the relation
yh =1+ o).

The approach of the present paper is, however, somewhat different from the
aforementioned Boris method. It consists, in fact, in simplifying step by step the
procedure of motion initialization, by replacing eq. (A.2) with the following modified
difference equation:

] E_Eli e . (5{"“"’&") X
(AD eAt oM E"+ 212 xB

and using a space inecrement given by

i AL 2
(AS) X!i%‘?..z m‘/xn + _E_______________

Htz

y
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Fig. 10.

where ¢ (< 1/2) is a parameter, which must be recalculated at each step by a trial and
error procedure (fig. 10).

For the separation of electric and magnetic field the following modified
substitutions are employed:

(A.9) u =y —eE"zAt/2m,
(A10) "t =ut + el s At/2m,
which lead, using (A7), to the basic equation

(A11) £t —u = 4 (ut+u" )X B"
zdt eyt T T =

The numerical steps of the present modified Boris method may be schematized as
follows:

1) add half of the electric contribution to u™ using (A.9) to obtain u ~ (having
the same amplitude as #"*%?) thus bringing to

Tnh-/ﬂ - [1 + (’N, - /0)2]1/2 ;

2) obtain u * by the rotation (A.8), in the following way:
o) compute

{A12) n'=n"tu"xXh,
where
eB -z At
(A13) h=——,
T me2yt et

b} thus obtaining
(A.14) u¥=u"+tu'xs,

where the vector s is parallel to B" and its magnitude is determined by the
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requirement ju "~ | = |k * | so that
(A.15) s =2/ +h%);

3) add to g * the remaining half of the electric contribution, using eq. (A.10)
obtain &"*°, and recaleulate

Tu*.—: — [1 + (uu-i—:/c)ﬁ]l/.‘! :

4) obtain the new position X""* by means of (A.3).

The veetor & is brought to the same time step of X #+2% hy an inerement = Af given
to #"**. The computation eycle may now be repeated until the requested orbit is
entirely traced.

The time lag between position and momentum, required by any leap-frog method,
is obtained by a space advancement corresponding to twice the time step eAf
employed to compute the particle momentum (fig. 10).

Each step requires of course the computation (to be performed by finding = by
trial and error) of the new concurrence point. At the beginning of each step, X and &
are computed at the same time; then the increment of u” is computed by a time step
¢ At, thus obntaining #"** and giving the condition for the space advancement X" —
—» X"+ If now X+ % is found to satisfy the concurrence point conditions, the quantity
u”*® is updated to z"**, and the cycle may be repeated.

APPENDIX B

Analytical-numerical method.

The problem numerically solved in appendix A, may be faced by an alternative
semi-analytical approach, based on the expression of the particle trajectory in
constant electric and magnetic fields (fig. 11)}{19,20], by means of a seguence of
suitable changes of the reference frame.

Let Z be the laboratory reference frame, where both E and B have arbitrary
directions. A rotation is performed from L to frame K where the only non-zero field

Fig. 11. — Trajectories of the two interacting particles. The numbers indicate the successive
coneurrent positions where the radiation coming from the retarded position of a particle hits
another one. The particles are launched with a Idnetic energy of 0.7477 MeV into a wiggler with
Jw=2em and B, = 10° gavss. The initial distance PP, is equal to 2-10" em.

P
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components ave By, By, By. Then we pass from K to moving system X' where the
electric and magnetic fields turn out to be paraliel, with components £y, E{, BJ,By.
This is obtained by imposing that

B3 — b (B + B + B )/(BagByg) +1=0,  yp={1~- B

where B¢ is the veloeity of K relative to XK. Another rotation is now performed from
K’ to a system K" where the electric and magnetics fields are parallel to the
z"-axis.

The motion equations in K" ave given by [9]

(B.D) Pr=0,PT@)y, Pl= - 0Py, Pl=eBy.

The trajectory equations in K", obtained from (B.1), may be written in the
form

X"(t") = [P, sin® — Py, (eos® — D)fLgm,
(B2) Y"(@") = [Peo(cos® — 1) + Py, sin®l/Qqm,

Z'({t"y = mePylk V1 + @) — 1)/ely
where Py is the initial particle momentum in the system K",
P(z) = By (sinh ™ = — sinh ™! 7)/Ey |
0= zoa/mypck, (") = (E§1" + gog)/myqck,

Wi Py, ges=Pi®fmevy, =By me, K=(1-G)”,

o P” 2] w3 _ PrrE Puﬂ Pﬂ".’_
';.'—l"%*m ,P—x-i'_,,.-f':,

and ¢" is the proper time in the system K" (and therefore in K'). We may express the
momentum components in the form
(B.3) Py =P cos®, Pyj=—Py,sin®, P’=eBjt"+Pyg,.

The particle coordinates and momentum components have now to be transformed
back to the laboratory frame L. The transformation from K" to K’ is determined by a
back-rotation by an angle —#&

X'=X", Y =Y"cos0+Z"sing, Z'=-Y"sin0+ Z" cos.
We pass now from K’ to K by the relativistic transiormations

Xh‘(t")m}’}\'[X'(t”)'{'ﬁ;"tnc], I;K(t")=y-’(t“), ng(ﬁ”)xz’(t,'),
{(B.4) by = yr[t" 4+ B X @) /el, Gr=1iL),

Pr.=vglPe + BB fcl, Pg,=P,, Pg.=PF:,

where E, = mec?y” is the particle energy both in X' and K".
Finally, the passage from K to L is obtained by means of a rotation opposite to the
one performed from L to K. When all the quantities describing the particle motion in
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the laboratory system L turn out, by means of a numerical procedure analogous to
that deseribed in appendix A, to satisfy the econcurrence point conditions, the
analytical-numerical cycle may be repeated by computing the new quantities with the
updated values of the fields and by assuming the value of the last particle momentum
value P, as the starting one Py, of the new cycle. The resulting orbits of the two
interacting electrons are shown in fig. 11.

The semi-analytical method described in the present appendix B becomes
competitive when the variation length of the external fields is large enough, and
when the relative influence of the radiated fields is small enough (Compton regime),
to ailow long steps in the numerical computation. In the typical cases treated in the
present paper the two approaches turn out to be almost equivalent.
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