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Summary. — Using the Boris mover, or other standard methods, the error
pile-up in the computation of the relativistic orbit of charged particles in
electric and magnetic fields becomes quickly excessive, if one wants to keep
reasonably limited the number of points employed to build the particle orbit.
An analytical solution becomes, therefore, desirable and its construction is
the subject of the present work.

PACS. 41.70. — Particles in electromagnetic fields: classical aspects
(including synchrotron radiation).

1. - Introduction.

The computer calculation of charged-particle orbits in the presence of
constant electrie and magnetic fields cannot be exploited with a simple «forward
integration» of the dynamic equation of motion, because an excessive error is
piled up, and, moreover, the procedure is not symmetrical with regard to time
reversal.

Particle orbits must be computed, instead, using a «leapfrog» scheme, where
the finite-difference form of derivatives is kept symmetrical with respect to time
reversal ().

The acceleration of a particle by a space-dependent foree can easily be dealt
with symmetrically by using «central differences» in the form

Xr:+1 - 2Xn +Xr:-—

s
at*

(n L= B im.

() O. BUNBMAN: J. Comput. Phys. 1, 517 (1967); 12, 124 (1973).
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The incorporation of a Lorentz force, however, raises the difficulty of
representing the velocity symmetrically in the cross-product V xB.
Electrodynamics, indeed, is symmetric with regard to the time reversal,
provided one changes the sign of the magnetic field along with the sign of time.

Representing the velocity in the form V=(X,., —X,.)/23, an explicit
solution for X,.; can be obtained from the Loventz equation in the finite-
difference form

"X.u-:- - ?Xu =+ ‘er- +1 7
@ L e e{E(X,.) +X"-‘—§’“-‘—‘><B(Xn>} /-m.
ot 2e gt

The presence of X, is sufficient to prevent the build-up of odd-even
discrepancies.

Equation (2) can be rewritten utilizing the velocities at half-integral time
levels

(3} Wi —V.olet=e{E, +[V,u+ V., X B./2c}m.

The vector equation (3) can be solved for V.. 85 a system of three
simultaneous scalar equations.

The solution given by the so-called «Boris mover» (), using several steps and
a complete separation of electric and magnetic forces, is better and simpler: the
separation of parallel and perpendicular components of motion is not needed (as
in the similar Buneman method (")) and the relativistic generalization is
straightforward (.

Recalling that the angle of rotation between consecutive velocities, normal to
the magnetic field B, is close to wat (with w = eB/me), it can be shown that the
«Boris mover» produces, for the time step 3t, a rotation angle equal to

wdt[1 ~ (36412 + wel,

where‘: the error is less than the second term of the series expansion (fig. 1).

Thl_s is, h.owever, a finite-difference method, where, following the paxticle
along its orbit, the error piling up becomes excessive when wst is larger than one
radian.

Moreover, the condition with high magnetie field must be considered, where

) J. P, Boris: Relativistic Plasma Simadation, in Proceedings of the Fouwrth
Conference on Nwmerical Stmulation of Plasmas; edited by J. BoRIS and R. SHANNY
(NRL, Washington, D. C., 1970) p. 3.

g“){lgs.o?UNEl\iAN, C. W. BarnES, J. C. GREEN and D. E. NIELSEN: J. Comput. Phys. 38,
{‘)_ C. Ifi. BirpsaLk, A. Bruck and 1. LANGDON: Plasma Physics Via Computer
Stmaulation (MeGraw-Hill New York, N.Y., 1985).
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Fig. 1. — Electron orbit calenlated with the Boris method. A very large number of points
is necessary to build up the orbit inside a cell. The length indicated on the right is 1 mm.
The initial value of particle’s 5 is 0.55. After 2.4-10""'s (time of the laboratory frame) 2
becomes 0.64. The electric fleld has intensity 4.9-10°V/em. The magnetic field is
7.9-10'G. The orbit is projected in the (Z, X)-plane of the reference frame L.

the rotation motion of the particles gives a long path even when the displacement
of the guiding centre is very short. In the Boris method one must caleulate a
sequence of points along the particle orbit, so that the orbit build-up must be
performed inside each cell with a very high number of points.

An analytical solution becomes, therefore, desirable; its construction is the
subject of the present work.

The analytical solution of motion equations for relativistic particles moving in
electric and magnetic fields is possible only in two cases: when the electric fieid
and the magnetic field are parallel, and when the fields are mutually orthogonal
and, in Gaussian units (adopted in this paper), with the same intensity.

An analytical solution of the relativistic motion equations of charged particles
is made all the more interesting by the present need fo use their orbits in
parametric form for the application in plasma simulation codes.

During a numerical plasma simulation, one alternates the fields caleulation,
starting from electric charge and cmrent distribution, and the solution of the
particle motion equations, starting from electric- and magnetic-field distribution
and from the boundary conditions, in order to «update» the particle positions and
velocities.
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Total field changes in space and time are obviously due to the particle
kinematics (i.e. to their position and velocity).

During each time step, the particle motion is built up assuming for the fields
the values calculated in the former step, and the extent of the time interval &t
and that of the spatial cell are dictated by the requirement that changes of F and
B, as seen by each particle, can be ignored. Therefore, the analytical solutions
must be contained in cells, where E and B can be considered constant.

2. — Reference frames I and K.

In order to obtain the analytical solutions of the relativistic motion equations
it is necessary to find, starting from the laboratory frame L, a reference frame
K, where the transformed fields E' and B’ are parallel, and a final frame K
obtained rotating K’ in such a way that £’ (and B') ave along the Z" axis.

It is preliminarly necessary to define a frame of reference K, where the vector
B has only the component By with respect to the Z axis, and the vector E lies in
the (Y, Z;) plane {see table I).

TABLE 1.

Reference Field Components Couordinates
frame veetor

L E; B EX:E2!E31 BEPB&'BS XL, YleL
K E, B=Ey, By, By, Bug, Bag XY, 2y
K’ E' B Ei, B, By, B XY E
I(‘ll E!, B! ﬁE”, BH Eg, Blsl X{l’ Y”, le

It £, E, E, B, By, By are the components of the vectors £ and B in the
laboratory frame L, assuming as positive direction of the Z axis the direction of
the magmetic field B, the components of the versor Zy are

{4) C(3,1y=B/|B| (1=1,2,8).
The Xy axis is parallel to the vector
I=(E/E)xZ;, where E = |E}.
If we put CE(i}=E/E, the components of the vector I are given by

J I1=CE(?2)-C(3,3) — CE@®)-C(3,2),
{5) I2=CE(3)- C3,1H~-CEQ)- C(3,3),
1 I3=CE(1)-C(3,2)- CE(®)- C(3,1).
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The unit vector of the Xy axis is, therefore, X = I/ |I], whose components are
(6) ca,a=nL/|1 (i=1,2,3).
The unit vector ¥y = Z; x X, has the components
C(zj 1) = C(37 2} * C(lr 3) - 0(3; 3} * C(ly 2} ]
N CR2,2y=0@3,3)-00, 1)~ C3,1)-C(1,3),
C@,3)=C(3,1)-C(,2) - C@3,2)-C(1,1).

The system Xy, ¥, Zy is defined in the frame of reference X, ¥, Z;: by the
direction cosines C(3, 7). The coordinates transformation from L to K is given by
XK =XL‘ C(l, 1) + YL . C(l, 2) +ZL M C(l, 3} N
{8) Yi=X, - CR,1D+Y,-CE,H+Z2,-C2,3),
1 Zp=X,-CB,1+Y,-CE,2+Z,-C(8,3).

Now that the reference frame K is defined, it is possible to caleulate in this
system the £ and B components, initially assigned in the system L. We get

4 3 3 .
JEm:ZEi‘C(z,i), Ew=>E-C@8,9, B€3K=ElBi'C(3:1))
iml i=] =

9
1 Eiy=Byx=By=0.

3. - Reference frames X' and K.

The origins of the two frames K and K' are assumed to coincide at the time
t=40 (fig. 2).

K’ is assumed to move with respect to the frame K with a velocity V in the
direction of the Xy axis (collinear to X").

Putting

(10) Be=Vie, vye=Q1-"

the fields must satisfy the Lorentz transformations

(11} Ei=0, Ei=v(FBy—0BsBu), Ei=ygEux,
(12) Bi=0, Bi= vBrEar, Bi=y(Bax— B Euw).
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Fig. 2. - Frames £, K’ and K'. K' moves with velocity ¥ in the divection of the X axis
(X" is collinear to X))

E' and B’ become parallel in the frame K' if
BBy ==K/l
so that
(13) E g BBy — Bl Br) = (Bog — Bx Bag) Eax
from which, if By #0, 8y is obtained as a voot of the equation
(14) Bt — BBy + B + B3l Eag - By +1=0.
The solution is given by
(15) Bp=— b2+ \bd =1,
where b= — (B8, + ES; + Big)/Eay Bsy. B¢ is real for b >2, which is always found

to be verified. The correct solution needed by our transformation is that with the
minus sign, such that gz— 0 for Euz— 0.
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By construction, the only field component that (in the frame K) can assume a
negative sign is Eyy.

For Eu <0 Bi and E} shall also be <0, while E; and B; shall always be >0
(fig. 3a)).
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Fig. 3. - Construction of the frame K" from K’ by rotation about the X' gxis of the angle &,
@) For By <0 (2>=/2), where x is the angle between B and E in the system K.
b) FOI' Eﬂ}'{ > 0 (ﬂ < ‘f".‘/?u).

For By, > 0 2ll the components of the two transformed vectors B’ and B’ shall

be >0 (fig. 3b).
For Eu— 0 the fields £ and B approach to be orthogonal.
Three cases ave possible in this condition: By = Bax.

92 ~ JI Nuove Cimento .
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a) For Eo+ Byg (B3x— () we obtain from solution (15), recalling that gy
must be less than unity,

(16) 8= (B3 + Bip)(2- Boy - Bap) — (B + Ba)H(4 - B3 - Big) ~ 1=
= [Boyp + Big — (£ B F Bi)V(2E o - Bug)

s0 that
an B = Bupl/Eox for Eop> By,
(18) B = Egp/Bag for Eap < Byy.

These values of 8y are the same obtained when, for orthogonal £ and B, we
choose a reference frame moving in such a way that one of the two fields is

cancelled by the relativistic transformation required by the assigned
movement (7},

B,

£8=08 ,0.9,1.0,1.1,12

0.8

a
0 2 i

Fig. 4 - ,Bh: =Vic vs. a. For Eu; = By and By, = 0 (Gaussian units) we have 8, =1, i.e. a
physieally impessible limiting case.

() J. D. Jackson: ~Classical Electrodynamics», (Wiley, New York, N.Y., 1962).
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b) When Eoy =By (Eyz— () transformations (17) and (18) cannot be
fulfilled because they would imply gz =1.

In this case, however, another analytic solution exists(®), which can be
expressed in parametric form, and shall be treated in sect. 4, case a).

From B; we can obtain the angle 6, which is the angle between the two
transformed vectors (B’ and B’) and the vector B (see fig. 2).

The angle 6 is given by

(19 0=tg " (BYB:) = tg ™ [Bx Bax/(Bax — Br Bap)]
or by
(20) 0=tg " (ByEy) =tg™ By — Bx Bax)/EBanl.

When, in the frame K, B =& we have

ey tgo=[sign(Ey) - B ~ Egl/Eoy,
{2
8
14, E/8=0.8,0.8,1.0,11,1.7 ;1.3 1.4
1.0
0.8
o
—alz z
Q /2 1

Fig. 5. — Plot of the angle 6 (the Z' rotation angle to obtain the Z"-axis) vs. =, for different
values of the parameter E/B.

(®) L. Lanpav and E. LarcHiTz: Theorie du Champ (MIR, Moscow, 1966}
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1452 R. GIOVANELLI
from which, being = the angle between B and E, we obtain
b=/ for 0<a<n/2, b= —(r—a}y2 for ml2<a<n

(see fig. 4 and 5).

For Egy <0 (Bay#0) being B; and Ej<0, ¢ shall be <0.

For By >0 the angle 0 is =90.

The last possible case is when Eo =0, so that the fields ave already parallel in
the systems K and L. In this case the system K’ coincides with K (85 = 0) (see
fig. 6-11 for a complete description of all the parameters as a function of the
angle «).

as

EIBmo.a,o.s',z.o,m .2

0 nf2 n

Fig. 6. — B'/B vs. =z for different values of the ratio E/B.

We introduce now a fourth frame of reference K" (obtained from K' rotating
it about the X' axis by the angle 6, so that the Z” axis is directed as E’ and B’),
where the particle orbit can be calculated by the known analytic solutions (see
fig. 2).
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a
~0.66 e
Fig. 7. -~ Bi/B vs. a.
8348
4 E/5=0.8,0.8,1.0,1.1,1.2
1
0.8

0
Fig. 8. — By/B vs. o

f?
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£ife :
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1
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Fig. 9. - E'VE vs. a
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1

E[B=08,09,10,1.1,1.2

a
o nf2 Py

ot

fig. 11, - EYE vs. «. The single components of the tvansformed vectors E' and B’ in the
frame of reference K’ ave very different for E' and B’, but the ratios of the {wo vector
amplitudes: [E'[/|E|, |8l/iB| (fig. 6 and 9) ave quite similar.

4, — Analytic solutions.

In the system L the initial momentum P, is assigned by its components Py(3),
together with the initial coordinates Xy(2).
The transformation from the reference frame L to the frame K is defined by

@2) Pty =3 o) - CGL ),
J=l

@3) Xox) =3 Xol i) CG, )
]

The relationship between the frame of reference K and the frame K’ is
expressed by the relativistic transformations

[ X'=yu Xy — Bit-cl,
Y'=Yg,

(24) )
ZJ: Z:’f ¥

= yult - B Xifel.
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1456 R. GIOVANELLI
It is assumed that for ¢ =0 the particle coordinates are
Xp=Yy=Zz=0.
The particle total energy in the system K is
(25) Bt=myc?y, where y=[1+ Pi/mjc®]

being Pi»&PK(]_)z-i-PK(z}g—i-PK(S}Q in the System K (PI;EPL}.
Going to the system K', the total energy is transformed as

(26) Et'= }'K[Et—,@.rtpu{l) ‘C].
The momentum transformation leaves its components unchanged with

respect to the Y and Z axes, while the component with respect to the Xy axis is
transformed by the equation

&7 Pr(l)= 7‘1{{P1c(1} -~ Btfglc].

a) In the system K for E.;=Bs and Eyz =0 the solution is given in a
parametric form (9.
The parameter, monotonous in time because the electrie-field component o
is always directed as the Yy axis, is the particle momentum REPy(2) along Y.
From the equations of the relativistic dynamics in this very peculiar case, we
have, in the reference frame K,
Py(l)=e- Bu- V(e
(28) Py(®) = ¢+ Eye(1 = V(Dic),
Pe(3)=0,

where e is the particle electric charge and V(i) are the particle velocity
components. From egs. (28) we get the parametric equations

©9)  Xp=(Pel®— Pol®) (a— _ 1)Aa3/c + (P2 — Py A + Xo,
303 Y ={(Px(2F — Po(2® A + Yo,

(3D Zy=(Pg(2) — Pou(2)) Pr(8) Aba + Zoy

2)  t =(Px@F~Pu@DA+ Py - Pul®) (1 +—a—} /ZeEM,
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where
a=[Ety—cP1)], e=[mic'+ P3¢, A= c(Be - Eop 07,

Et, is the initial total energy of the particle.
From (32) we obtain

(33) P2+ 8qP(2) - 2r() =0
resulting after the introduction of the paraumsiers
g={a2+ e, 1) =Po@¥2 + Pp(2) Ha®+ 2t +1-c/24.
Being (¢8 + 7% >0, the solution of eq. (33} is given by
(34) P =1[1t) + (g* + 1T + [r®) — (@ + 17O F,

which allows us to express the particle coordinates (egs. (29)-(31)) as functions of
time.

b) In the system K" for B # By the analytic solution is built up as follows.

The relativistic-motion equations of a particle in the system of coordinates X"
can be expressed in the form

(35) P(1) = Q. P" Dy,
(36) P2y = — Gy P"(Div,
(87 P3y=¢ EY,

where Q,=eBifmyc and y(P") =1+ Py e)r1.
We now define the parameters

son=Pi8)moyec, 10= (P,
E=[1- F%s]é y
70 = eoa/ Mo Yo cl,
(") = (B4 t" + sa)/o yock

D)= %‘% [sinh~!= — sinh '],
3

where Pj§ is the initial partiele momentum.
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The analytic solution of egs. (35)-(37) is found to be given by

(38) X"y = n:? - [PiD)sing — Py@)(cos # ~ 1],

(39) Yty = -,:;UITH— [Pi(1)cos & — 1) + PY2) sin &},
Bty

(40) 2/ =" e VI ) - 1,

where " is the proper time of the system K*(t"=t').
This solution has now to be transformed back in the laboratory frame L.
The transformation from K” to K’ is determined by a back-votation of system
K" by the angle — 0 about the X" axis:

J’ XI=XH,
(41) Y'=Y¥Y"cos0+ Z"sin6,
{ Z'=—Y"sin0+ Z"cos .

The relativistic transformation from K’ to X is given by

(42) Xt = vl X' + B t” ],
{43) Yt =Y,
(44) 2yt =2'(t",
(45) T = yalt” + Br Xxlt"Ve].

Equation (45} gives the proper time #; of the system K (the same time of the
system L).

The motion is defined as a time function by egs. (42)-(44) according to eq. (45),
where the time t; is a function of time ¢'. The particle coordinates ave finally
translated to the system L hy the transformations

J X, =XsCL, 0+ Yz C@ D+ Z;C3,13,

Y =XiC,20+ Y, C@E, 2+ Z;0(3,2),

{46)
1 ZL =X1;C(1, 3) + Y;;C(Z, 3} 4 Z;{C(3, 3) .
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5. — Numerical examples.

An electron orbit is constructed starting from its initial momentum in a spatial
cell two millimeters wide, where the electric and magnetic fields can be assumed
to be constant in time and uniform in space (fig. 12).

wdt=0.1
e anulytical
solution

length 1mm

Fig. 12. — Projection on the (Z, X)-plane {of the system L) of the electron orbit caleutated
with the analytical solution (46) outlined in the present work. The motion parameters are
the same of the orbit drawn in fig. 1

The orbits obtained by the Boris mover tend to the ones construeted by means
of the analytical solution with decreasing w3f (see fig. 1).
On the contrary, the deviation from the analytic solution becomes very high

when wat> 1.

©® RIASSUNTO

Usando il metodo di Boris, oppure altri metodi standard, Paccumulazione degli ervori nella
determinazione numerica delie orbite relativistiche di particeile cariehe in campi eletirici
e magnetici diventa intollerabile, se it numero dei punti impiegati per-costruire le orbite
stesse & mantenuto basso. Una seoluzione analitica diviene gquindi utiie,:’-'e__qu_gs_ta costituisce
Yargomento del presente lavoro. Ce
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Anangrueckoe PACCMOTPEHNE PENSTHBEHCYCKOTO JBHIKEHHS 33pAKEHHBIX QACTHHE B
NICKTPHYECKOM H M2rNHTHOM DOJIAX.

Pesiome (). — B paMKax CTaHIapTHRIX METONOB HOTPELIHOCTH IDH  BLIMHCASHHH
PEAATHBHCTCKON OPOHTBL 3APAKEHNBIX 4ACTHU B 3MEKTPOHHOM M MAFHHTHOM MOMSX
CTAHOBHTCH “pe3MepHO GONbON, eCNH [UIs HOCTPOCHHS OPOHTHI YACHIBI HCHOABIYETCS
OTPAHIYCHHOE YHCAC TOYEK. B CBAIN ¢ 9THM KOHCTPYHpYETCH aHANHTHYECKOE pPelleHHe.

(") Hepesedeno pedaryueri.
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