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1. Introduction 
 
 Due to the disdainful attitude of influent Founding 
Fathers such as Heisenberg and Einstein, the main alternative 
interpretation of Quantum Mechanics - the “hidden variables” 
point of view proposed by de Broglie [1-3] and Bohm [4,5] - 
did not enter in the mainstream of Physics, and was forced to 
develop into a separate, somewhat esoteric and almost heretical  
“church” [6].  
 In the present (simple, but not necessarily simplistic) work 
we make use of an approach bearing some analogies with that 
alternative standpoint, but bypassing its uncomfortable 
Hamilton-Jacobi equations (requiring an often unattainable 
generating function) in favour of a set of easily integrable 
Hamiltonian equations. These equations provide an exact and 
deterministic description of the quantum motion of a particle 
beam, and contain the classical dynamical laws as a particular 
case, thus suggesting that the standard probabilistic treatment 
of quantum features may constitute the best approach when a 
detailed information is lacking, but does not necessarily reflect 
an intrinsically indetermined nature of physical reality. 
 As is well known (and as we shall see in the next Section), 
the Helmholtz equation, describing a wide family of classical 
monochromatic wave-like phenomena, may be reduced to a 
system of two coupled equations (eqs. (5) of the present paper). 
The first of these equations is usually truncated, by neglecting the 
term coupling it to the second equation. In such an incomplete form 
it provides, by itself alone, the set of "rays" which characterizes 
the so-called geometrical optics approximation. No further 
contribution to the ray geometry is given, in this limit, by the 
second of eqs. (5). 
 In the present paper the coupled equation system (5) is 
shown to lead, without any omission or approximation, to a 
Hamiltonian ray-tracing set of equations (our eqs. (13)), 
providing the exact description of a family of wave-like 
phenomena much wider than that allowed by the standard 
geometrical optics and including, for instance, wave diffraction 

and interference. The term 
2 R

R

∇
, usually dropped from the first 

of eqs. (5) in the context of standard geometrical optics,  is 
taken into account and shown to be of crucial importance: the 
rays of a beam turn out to be mutually correlated, indeed, by its 
gradient, acting perpendicularly to the rays themselves and 
determining therefore their geometry without altering the 
amplitude of their velocity; and an equally crucial importance is 
shown to be attached to the second of eqs. (5).  
 The exact ray-tracing system (13) deduced from the 
Helmholtz equation is then shown to be strictly analogous to a 
novel, exact and deterministic dynamical Hamiltonian system (our 
eqs.(27)), deduced from the time-independent Schrödinger 
equation (which is itself a Helmholtz-like equation), and 
providing the trajectories and the motion law of a quantum 
particle beam. The term neglected in the context of standard 
geometrical optics is shown, in its turn, to coincide (aside from 
constant factors) with the quantum potential described by Bohm 
and de Broglie.  
 For the first time, therefore, in the 55 years elapsed from 
Bohm's works, the basic character of the "force" deduced from 
this quantum potential (i.e. the fundamental property of being 
transversal with respect to the particle velocities, thus preserving 
their amplitude) is discovered, stressed and exploited. 
 A unique Hamiltonian system (our eqs.(28)), to which both 
eqs. (13) and (27) may be reduced, is then obtained for an 
arbitrary beam consisting, indifferently, either of classical 
electromagnetic rays or of quantum particles. Such a system is 
numerically solved here in the simple 2-dimensional case (30) 
for a beam passing through a single slit,  and the diffractive 
behaviour of its solutions is clearly evidenced. 
 We point out again that the main intuition leading to these 
novel results stems from the formal analogy between the time 
independent Schrödinger equation and the Helmholtz equation: 
an analogy, indeed, which allows to go beyond classical dynamics 
by means of the same mathematics allowing to go beyond the 
standard geometrical optics approximation.  A direct proof that a 
deterministic, classical-looking description is possible not only 
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in principle, but in easy practice, is provided, therefore, in a 
simple and natural way, avoiding the conceptually useless 
complication - as far as a basic principle has to be established - 
involved by the time dependent Schrödinger equation: an apparent 
generality whose result is only to hinder the demonstration that 
particle trajectories do exist. 
 
2. Helmholtz equation and geometrical optics 
  
 In order to establish the mathematical formalism to be 
extended, later on, to the quantum treatment of a particle beam, 
let us start from a classical case of wave-like behaviour. 
 Although many kinds of waves would lend themselves to 
the considerations we have in mind here, we shall refer, in order 
to fix ideas, to a monochromatic electromagnetic wave beam, 
with a time dependence ÷ exp (iωt), travelling through an 
isotropic and inhomogeneous dielectric medium. Its basic 
features are accounted for by the Helmholtz equation 
 

     2 2
0ψ ( n k ) ψ 0∇ + =  ,     (1) 

 

where 
2 2 2

2
2 2 2x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

; ψ represents any 

component of the electric or magnetic field; n(x,y,z) is the 
refractive index of the medium, and 
 

      0
0

2π ω
k

λ c
≡ =  ,       (2) 

 

with obvious meaning of λ0  and  c.  The phase velocity is given, 
in its turn, by   
 

      ( ) ( )phv x, y, z c n x, y, z= .     (3) 

 
 Because of its time-independence, eq.(1) doesn’t directly 
describe, of course, any propagation phenomenon: it only 
determines, together with the boundary conditions, the fixed 
space frame where propagation occurs. 
By performing the quite general replacement 
 

     i φ( x ,y ,z )ψ( x, y,z ) R( x, y,z )e=  ,   (4) 

 
with real R(x,y,z) and ϕ( x,y,z), and separating the real from the 
imaginary part, eq.(1) splits into the well known [7] and strictly 
equivalent system of coupled equations  
 

     

2
2 2

0

2

R
( φ ) ( nk )

R

( R φ ) 0

 ∇∇ − =

∇ ⋅ ∇ =

     (5) 

 

where / ( / x, / y, / z )∇ ≡ ∂ ∂ ≡ ∂ ∂ ∂ ∂ ∂ ∂r ,  and the second of 

eqs.(5) expresses the constancy of  the  flux of the vector  R2∇ϕ  

along any tube formed by the lines of ∇ϕ  itself, i.e. normally to 
the phase surfaces ϕ (x,y,z) = const.  
When the space variation length, L, of the amplitude  R(x,y,z)  
may be assumed to satisfy the condition  k0 L >>1,  the first of 
eqs.(5) is well approximated by the eikonal equation 
  

      2 2
0( φ ) ( nk )∇ ≅  ,     (6) 

 
decoupled from the second of eqs.(5) (whose presence is 
generally neglected) and allowing the so-called geometrical optics 

approximation, which describes the wave propagation in terms of  
“rays”  travelling along the field lines of  the wave vector 
 

       φ= ∇k        (7)  

 
independently from the amplitude distribution R(x,y,z) of the beam. To 
be sure, by multiplying eq.(6), for convenience, by the constant 

factor 
0

c

2 k
, we obtain the relation  

    2 2
0

0

c
D( , ) [ ] 0

2 k
k ( n k )≡ ≅−r k ,   (8)  

 
(where r ≡(x,y,z)),  whose differentiation  
 

     
D D

d d 0
∂ ∂⋅ + ⋅ =
∂ ∂

r k
r k

    (9) 

 
directly provides, for any assigned refractive function n(r), both 
the geometrical form of the rays and their motion law in the 
simple Hamiltonian form 
 

    
0

2
0

0

d D c

d t k

d D c
( nk )

d t 2 k

∂ = = ∂
 ∂ ∂ = − =
 ∂ ∂

r k
k

k
r r

   (10) 

 

where a ray velocity  ray
0

c

k
= k

v   is implicitly defined.  We may 

observe  that  vray ≡ vray  = c  when k = k0 , and that             
vray vph = c2. 
We conclude the present Section by recalling Fermat’s 
variational principle, according to which any optical ray 
travelling between two points A,B shall follow a trajectory 
satisfying the condition 
 

       
B

A
δ k ds 0=∫ ,      (11) 

 

where k = k  and ds is an element of a (virtual) line 

connecting A and B. 
 
3. Beyond the geometrical optics approximation 
  
 Let us consider now the first of eqs.(5) in its complete form, 
arriving therefore at the exact relation, generalizing the function 
D(r,k)  of eq.(8),  
 

  
2

2 2
0

0

c R
D( , ) [ ] 0

2 k R
k ( n k ) ∇≡ =− −r k ,  (12)  

 
whose differentiation, formally coinciding with eq. (9), leads to 
the exact Hamiltonian  ray-tracing system  
 

  
0

2
2

0
0

d D c

d t k

d D c R
[( nk ) ]

d t 2 k R

∂ = = ∂


∂ ∂ ∇ = − = +
 ∂ ∂

r k
k

k
r r

   (13) 
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The system (13) completely avoids the standard approximation 
of geometrical optics, although fully retaining the idea of 

electromagnetic “rays” travelling along the field lines of k ≡ ∇ϕ 
, which depend, however, on the wave amplitude distribution 
R(x,y,z) of the beam. In order to exploit this dependence we 
must recall the presence of the second of eqs. (5), which may be 
written in the form 
 

   2 2( R φ ) 2R R φ R φ 0∇ ⋅ ∇ ≡ ∇ ⋅∇ + ∇ ⋅∇ =    (14) 

 
Since no new ray trajectory may suddenly arise in the space 
region spanned by the beam,  we must have, of course,  

φ 0∇ ⋅∇ = , so that eq.(14) splits into the system 

 

      
φ 0

R φ 0

∇ ⋅∇ =
∇ ⋅∇ =

        (15) 

 
where the second equation is automatically entailed by the first 
one. The values of the function R(x,y,z) are therefore constant 

(i.e. “transported”) along the field lines of φ≡ ∇k , to which 

R∇  turns out to be perpendicular, and this transverse character 

is shared by the gradient 
2 R

R

∂ ∇
∂ r

. The amplitude  vray  of the 

ray velocity shall remain, in vacuum,  equal to  c  all along its 
trajectory, because  such a gradient may only modify the 
direction, but not the absolute value, of the wave vector k : the only 

possible changes of k could be due, in a medium different 
from vacuum,  to its refractive function  n(x,y,z).  
 Thanks to its constancy along each ray trajectory the 
function R(x,y,z) once assigned on the launching surface from 
where the ray beam is assumed to start, may be numerically 
built up step by step, together with its derivatives, in the whole 
region crossed by the beam. As we shall see in Sect.7, indeed, 
the exact equation system (13) lends itself to an easy numerical 
solution, even in physical cases where the standard geometrical 
optics approximation is completely inapplicable. 
 
4. The time-independent Schrödinger equation 
  
 The classical motion of a mono-energetic beam of non-
interacting particles of mass  m  through a force field deriving 
from a potential energy V(x,y,z)  not explicitly depending on 
time may be described for each particle of the beam, as is well 
known, by means of the so-called “reduced” (or “time-
independent”) Hamilton-Jacobi  equation [7] 
 

      2( S ) 2 m ( E V )∇ = −  ,     (16) 

 
where  E  is the total energy, and one of the main properties of 
the function S(x,y,z) is that the particle momentum is given by 
 

       S= ∇p  .       (17) 

 
Recalling Maupertuis’ variational principle 
 

        
B

A
δ p ds 0≡∫ ,     (18) 

 

with p = p , the formal analogy between eqs.(6,7,11) on one 

side, and eqs.(16-18) on the other side, suggests, as is well 
known, that the classical particle trajectories could constitute the 
geometrical optics approximation of an equation (analogous to the 

Helmholtz  eq.(1)), which is immediately obtained by means of 
the substitutions 
 

      
0

0
0

2

S
φ and therefore

a
S

φ ;
a a

2mE p2π
k

λ a a

V( x, y,z )
n ( x, y,z ) 1

E

 =


∇ = ∇ = =


 ≡ = ≡


 = −


p
k

    (19) 

 
where the parameter  a  represents a constant action  whose 
value is a priori arbitrary - as far as the relations (19) are 
concerned - but is imposed by the history itself of Quantum 
Mechanics : 
 

     27a 1.0546 10 erg s−= ≅ × ⋅ℏ .   (20)  

 
The equation obtained from the Helmholtz equation (1) by 
means of the substitutions (19) and (20) takes up the form 
 

      2
2

2m
ψ ( E V )ψ 0∇ + − =
ℏ

,     (21)  

 
which is the standard time-independent Schrödinger equation.  
By applying now to eq.(21) the same procedure leading from 
eq.(1) to eqs.(5), and assuming therefore 
 

     i S( x ,y ,z ) /ψ( x, y,z ) R( x, y,z )e= ℏ    (22) 

 
eq.(21) splits [8] into the coupled system  
 

    

2
2 2

2

R
( S ) 2m( E V )

R

( R S ) 0

 ∇∇ − − =

∇ ⋅ ∇ =

ℏ
    (23) 

 
By taking the gradient of the first of eqs.(23) we get moreover 
 

   
2 2

2

S S V R
( )

m m m R2 m
( )∇ ∇ ∇ ∇∇ + = ∇⋅ ℏ

.    (24) 

 
Eq.(24), together with the second of eqs.(23), is often 

interpreted as describing, in the “classical limit”  0→ℏ  
(whatever such a limit may mean), a  “fluid”  of particles with 

mass m and velocity 
S

m

∇
, moving in an external potential 

V(x,y,z): an interpretation consistent with the probabilistic 
character usually ascribed to the Schrödinger equation. 
 
5. Hamiltonian description of quantum  particle motion 
  
 Let us now observe that, by simply maintaining eq.(17), 
the first of eqs.(23) may be written in the form of a generalized, 
time-independent Hamiltonian 
 

    
2 2 2p R

H ( ) V E
2m 2m R

∇≡ + − =ℏ
r, p  ,   (25) 
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including the “new” and crucial term 
2 2 R

2m R

∇ℏ
, to be 

commented later on. 
By differentiating eq.( 25) we get the relation 
 

     
H H

d d 0
∂ ∂⋅ + ⋅ =
∂ ∂

r p
r p

     (26) 

 
leading to a Hamiltonian dynamical system of the form 
 

   
2 2

d H

d t m

d H R
[V( ) ]

d t 2m R

∂ = = ∂


∂ ∂ ∇ = − = − −
 ∂ ∂

ℏ

r p
p

p
r

r r

  (27) 

 
strictly similar to the ray-tracing system (13).  If we envisage the 
system (27) for what it appears to be, without superimposing 
any interpretative prejudice, it is quite evident that its 
mathematical treatment is the same employed in the classical 
ray-tracing case, including the fact that the function R(x,y,z) is 

“transported” along the field lines of S≡ ∇p , to which R∇  

turns out to be perpendicular.  The gradient 
2 R

R

∂ ∇
∂ r

, in its 

turn, remains tangent to the wave-front, without acting on the 
amplitude of the particle velocity (but modifying, in general, its 
direction). The only possible amplitude changes could be due to 
the presence of an external potential V(x,y,z).  
Once more, thanks to its constancy along each trajectory, the 
function R(x,y,z) may be assigned on the launching surface from 
where the beam is assumed to start, and numerically built up 
step by step, together with its derivatives, in the whole region 
spanned by the motion of the beam.  
 
6. The unique dimensionless Hamiltonian system 
 
 A quite expedient step is now the passage to the new, 

dimensionless variables  ξ , ρ ,τ  defined as the ratio between, r,   
p and t, respectively, and 0 0λ 2π / p≡ ℏ  for the space 

variables,  p0  ≡ (2mE)1/2  for the momentum variables (so that  

ρ0 = 1), and  0

0

λ

p / m
  for the time variable.  

The equation system (27) takes up therefore the form 
 

    

2

d ξ
ρ

d t

d ρ V( ξ ) 1
[ G( ξ )]

d t ξ 2E 8 π


=




∂ = − −
 ∂

   (28) 

with  

   

2 2 2

2 2 2

0 0 0

1 R R R
G( ξ ) ( );

R ξ η ζ

ξ ( ξ , η, ζ ) ( x / λ , y / λ , z / λ )

∂ ∂ ∂= + +
∂ ∂ ∂

≡ ≡
   (29)  

 
It may be observed that no direct reference is present, in the 
dimensionless form (28) assumed by the quantum dynamical 
system (27), to the mass of the moving particles, and not even 

to ℏ . 
Let us also observe that the same dimensionless form (28) is taken up 
by the ray-tracing system (13) - relevant to the classical 

electromagnetic case - by simply assuming 
0

c t
τ
λ

=  and 

replacing ρ with ray

ok c
≡

vk
 and 

V( x, y,z )

E
 with [1- n2(x,y,z)],   

in agreement  with  the relations (19).  
 
 Once assigned on the launching surface of the beam, the 
function G(ξ) may be numerically determined step by step, in 
principle, together with its derivatives, by means of an 
interpolation process iterated along the full set of trajectories of 
the beam and connecting each step to the previous ones. This 
function, due to the wave amplitude distribution of the beam 
on the advancing wave-front, turns out to be the same - in 
correspondence with the same boundary conditions - for 
classical electromagnetic rays as well as for quantum material 
particles, although it has obviously nothing to do, in the 
electromagnetic case, with quantum features. In its absence, 
however, the system (28) would simply describe the classical 
motion of each particle of the beam. Due to the small 

coefficient 
2

1

8π
, the transverse gradient 

G

ξ

∂
∂

 acts along the 

trajectory pattern in a soft and cumulative way: a fact granting 
the main justification for omitting such a term, as is done both 
in classical dynamics and in the standard  geometrical optics 
approximation. 
 The trajectory pattern, in its turn, is a stationary structure 
determined at the very outset in a way somewhat reminding the 
spirit of classical variational principles, such as the ones of 
Fermat and Maupertuis. For any set of boundary conditions 
imposed to the function R(x,y,z) on the launching surface of the 
beam, and for any assigned refractive medium (or force field), 
the system (28)  provides both a “weft” of  “rails” and a motion 
law to which particles (or rays) are deterministically bound, 
showing no trace of probabilistic features.  
 The modern point of view of Quantum Mechanics on 
indeterminism has nothing to do, as is well known, with the 
naive idea of a disturbance due to the observer, which would 
imply an underlying deterministic situation “blurred” by the 
observation device. Indeterminism is currently conceived, in 
fact, as an intrinsic natural property, forbidding, even in 
principle, to assign a definite trajectory to a moving particle, 
and reserving to the observer the subtle role of inducing (in 
general) the collapse of the observed system from a 
superposition of its possible states into a single one of them, 
according to well defined probabilities. 
 Contrary to this point of view, however, each particle (as 
well as each electromagnetic ray) of the beam turns out to be 
conceivable, on the basis of the present analysis, as starting and 
remaining on a well definite trajectory. Such a trajectory belongs 
to a pattern which is a priori  fixed, as a whole, by the properties 
of the medium and by the values assigned to the beam 
amplitude distribution R(x,y,z) on the launching surface.  
 The system (28) provides, in conclusion, a set of 
dynamical laws which replace - and contain as a limiting case, 

when the transverse gradient 
2 R

R

∂ ∇
∂ r

 may be assumed to be 

negligible - the classical ones.  Let us observe that the possibility 
of neglecting such a term, and of obtaining therefore a classical-
looking description, may turn out to be limited to a simple 
portion (typically, the central part) of a beam. In striking 
divergence from the classical dynamical laws, however, the new 
set of equations, because of its equivalence with a Helmholtz-
like equation, requires in general the full set of boundary 
conditions for the determination of each trajectory of the beam. 
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7. Wave-like features in Hamiltonian form 
 
 Although an accurate and general numerical treatment lies 
beyond the aims of the present paper, we propose here the 
application of the equation system (28) to the propagation of a 

collimated beam injected at ζ = 0 parallel to the ζ-axis, and  
centered at ξ = 0, in order to simulate wave diffraction through 
a single slit.  
 The problem may be faced by taking into account for 
simplicity sake (but with no substantial loss of generality) either 
a (quantum) particle beam in the absence of external fields         
(V = 0), or a (classical) electromagnetic beam in vacuum (n2 = 1), 
with a geometry allowing to limit the computation to the 
trajectories lying on the (ξ,ζ)-plane. The Hamiltonian system 
(28) takes up therefore the form  
 

      

x

z

x
2

z
2

dξ
ρ

dτ
dζ

ρ
dτ
dρ 1

G( ξ ,ζ )
dτ ξ8 π

dρ 1
G( ξ ,ζ )

dτ ζ8 π

 =

 =

 ∂
 =

∂
 ∂ =
 ∂

   ( 30) 

with  

   

2 2

2 2

x z 0

1 R R
G( ξ ,ζ ) ( );

R ξ ζ

ρ ( ζ 0 ) 0; ρ ( ζ 0 ) ρ 1

∂ ∂= +
∂ ∂

= = = = =
    (31) 

 

and a suitable amplitude distribution R( ξ ,ζ 0 )=  (from whose 

normalization the function G is obviously independent) 

imposed at  ζ = 0.  
 Because of the transverse nature of the gradient of G(ξ,ζ), 

the amplitude of the vector ρ remains unchanged (in the absence 
of external fields and/or refractive effects) along each 
trajectory, leading therefore to the relation  
 

      2 2 2
z o x xρ ρ ρ 1 ρ= − ≡ − ,    (32) 

 
which may advantageously replace the fourth equation of the 
Hamiltonian system (30). Two possible models of the 

amplitude distribution R( ξ ,ζ 0 )= are obtained by assuming 

• a Gaussian distribution centered at ξ = 0, in the form  
 

    

2
22

1
0

x( )w ε ξR ( ξ ;ζ 0 ) e e
− −= ÷ ≡     (33) 

 

(with constant w0  and 
0

0

λ
ε 1

w
= ≤ ), a functional form suggested 

by its smooth analytical behaviour; or 

• an algebraic distribution, in the form 
 

   2 2N
2N

0

1 1
R ( ξ ;ζ 0 )

x 1 ( ε ξ )1 ( )
w

= ÷ ≡
++

   (34) 

(with integer N), which allows to represent even a quite flat 
central region, widening with increasing  N. We show in Fig.1 
both the distributions R1 and R2, with  ε = 0.1 and N =1, and in 
Fig.2 the corresponding functions 

    
2

1,2
1,2 2

1,2

d R1
G ( ξ ;ζ 0 )

R d ξ
= =     (35) 

 

determining the launching conditions at  ζ=0. It is seen that 
rather similar distributions  R1,2  may lead to quite different  G1,2 
and therefore to quite different trajectory patterns.  In our preliminary 
computations the functions G1,2(ξ;ζ>0)  are built up step by step 
by means of a 3-points Lagrange interpolation. As predicted by 
the standard diffraction theory [9], no “fringe” is  found in the 
Gaussian case of Fig.3 (due to the fact that the Fourier 
transform of the distribution R1 consists of another Gaussian 
function), while “fringes” appear (in the form of gathering 
trajectories) in Fig.4 for the algebraic initial distribution R2, 

focusing closer to the launching plane for higher values of  ε.  
We shall not discuss here the specific form of these fringes, 
since the basic result to be pointed out is their very appearance 
in the context of our Hamiltonian approach. 
 No further difficulty would be encountered in the case of 

two beams, injected parallel to the ζ-axis at ζ = 0 and centered, 

on the  ξ-axis, at two symmetrical points ξ = ± ξ0, in order to 
simulate both their diffraction and their interference through a 
double slit. 
 
8. Discussion and conclusions 
 
 A certain analogy may be observed between the results of 
the present work and the ones previously published by one of 
the Authors (A.O.) in a quite different context [10-12]. Another 
obvious analogy is found with Refs.[13,14] (based on Bohm’s 
approach)  which are hindered, however, by a Hamilton-Jacobi 
set of equations which would need, in general, an often 
unattainable generating function: an obstacle which is avoided by 
an entangled solution method requiring the previous knowledge 

of the wave function ψ. Such a harsh method (and logical 
discontinuity) should be compared with our directly integrable 
set of Hamiltonian motion laws. To be sure, the mathematical 
complexity of the set of particle trajectories presented (in the 
interference case) in Refs.[13,14] is so great that  these lines are 
simply reproduced (without any improvement) in Refs.[6a,b]. 
Let us stress, incidentally, that we analyze here, for the first 
time, the diffractive case, showing the dependence both of the ray 
geometry and of the motion law on the launching beam 
amplitude distribution R(r) (our eqs.(33) and (34)). 
 Our opinion is that Bohm did not convince the scientific 
community because he did not notice the implications, holding 
even beyond the quantum case, of the time-independent (and therefore 
Helmholtz-like) Schrödinger equation, allowing a simple, direct 
and natural connection with geometrical optics. While, in 

particular, the term 
2 2 R

2m R

∇ℏ
 of eq. (25) has the dimensions 

and the behaviour of a potential field, exerting a real 
(transverse) force on the quantum particle beam, the 
corresponding term in eq.(12), concerning a classical 
electromagnetic ray beam, has an obviously different nature, 
but leads to a strictly similar “weft” of trajectories.  A proper 
analysis of our Hamiltonian system in its general form (28) 
reveals indeed that the deviations of a particle beam from 
classical dynamics (or of a ray beam from standard geometrical optics) 

are entirely due, in any case, to the role of the gradient 
G

ξ

∂
∂

, 

arising from the beam distribution on the advancing wave-front 
and tangent to such a surface (thus affecting the beam 
geometry, but not its velocities).  
 A further, basic point to be stressed here is the influence of 
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the full set of boundary conditions on the form of the trajectories, 
and on the motion along them, of each particle (or ray) of the 
beam: a point which concerns, however, Wave Mechanics as well 
as Classical Electromagnetism (together with whatever 
phenomenon may be described in terms of Helmholtz-like 
equations). Any attempt, indeed, to apply the time independent 
Schrödinger equation to a single particle (not belonging to a 
beam) would not appear to be more plausible than the 
application of the Helmholtz equation to a single ray.  
 We may conclude the present work by suggesting that, 
contrary to a well established opinion, a probabilistic 
description of the behaviour of a quantum particle beam, 
although representing a convenient approximation when a fully 
detailed information is lacking or unnecessary, doesn’t 
inevitably supply the most exact possible approach. As we have 
shown, in fact, it is a straightforward task, starting from the time-
independent Schrödinger equation and avoiding its usual 
indeterministic interpretation without encountering any logical 
contradiction, to obtain a deterministic description, where the 
particle trajectories maintain a classical-looking reality. 
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FIGURE CAPTIONS 

 

 
Fig.1 - Plot of the amplitude distributions R1,2 assigned to the 

beam on the launching plane ζ = 0,  for 0

0

λ
ε 0.1

w
= = ,  

 • in the Gaussian case of eq.(33) (continuous line);  
 • in the algebraic  case of eq.(34), with N=1 (dotted line). 

 
Fig.2 - Plot of the initial functions G1,2 of eq. (35) 
corresponding to the distributions R1,2  of  FIG.1. 
 
 

 
Fig.3 - Trajectory pattern on the (ξ,ζ)-plane, in the Gaussian 
case of FIG.1. The beam is truncated at ζ = 700, in order to 
limit it to its most interesting part. 
 
 

 
Fig.4 - Trajectory pattern on the (ξ,ζ)-plane, in the algebraic 
case  of FIG.1. 


