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Abstract

The rigid behaviour of a crystal lattice submitted to sudden and localized events (such as emission. absorption and scattering
of quanta and/or light particles) is currently treated in terms of the well known Debye-Waller expression. Starting from first
principies, and referring 1o solids described according 1o the Debye model. we present here a rigorous and general expression of
the fraction of recoilless events. of which the Debye~Waller forms is shown to represent oaly a first approximation. holding in

the case of very low temperature solids.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the emission, absorption and scattering processes of
electromagnetic quanta, electrons. slow neutrons and light
neutral atoms by single atoms of a material aggregate there
exists a finite probability of eccurring in a recoilless, non-
dissipative way. This leature, implying & rigid behaviour of
the iattice as a whole, is confirmed by the experimental
evidence of many phenomens such as, for instance, the
Massbauver effect. B is nowadays well known that such
recoilless behaviour has a quantum nature, basicaily due to
the finite probability P, of & perturbed quantum oscillator
of remaining in its initial mth level of mechanical
osciliation.

The fraction of recoilless events, for a crystal latice
submitied to short and localized impulses, is currently
assumed to be given by the Debye-Waller (D-W)
expression, whose original formalation [1.2] dates back to
years whesn such & quantum nature was not yet clear enough.
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Although the D-W ecxpression was olten reconsidered for
many years {3-7], and although #5 quantum nature was
clearly peinted out [8.9]. its current accounts. even in
standard textbooks [10,117. stiil present traces of this origin,
particularly in what concerns its level of approximation.
When, however., the Méssbaucr effect (ME} was discovered
in 19537, the adoption by Mossbaver himsell (in order to
evaluate the fraction of ME events) of the current D-W
expression induced most researchers to believe that it was
the exact and definitive one, forgetting and neglecting the
involved and approximate character of its deduction, 1l was
not noticed. in particular, that the problent could be faced in
# much more satisfactory way thanks to a work published in
1958 by Kermmer [12]. Kerner, indeed. had found the exact
solutions of the Schridinger equation in the case of
harmonic oscillators submitted to forces with arbitrary
intensity and time dependence. The corresponding exact
expression of the probabilities P,,,. when inserted into the
context of a Debye solid. could casily allow to get a new and
generil expression of the fraction of recoilless events. This
fact was finally observed and published in Ref. [13]. At that
stage. however, the comparison with the stundard D-W
gxpression still remained somewhat obscure,
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[n the present paper we get a double result. The first
result is the deduction of the same genera] expressions
obtained in Ref. {13] by a quite different method., giving
them, therefore, a double warranty, The second, and most
important. result is the demonstration that the standard D-W
expression can be recovered as a particular, approximile
case trom our general expression. in the limit of very low
temperatures and perturbation energies of the crystal lattice,

Aiming here at a fully seif-comained account. we
describe in Section 2 the Debye model underlying both
our considerations and the standard ones.

Section 3 provides the exact form of the probability P,
obtained. for a single guantum oscillator, both according 10
our new procedure and according (o the previous one. based
on Kerner's work,

This expression of £, is inseried, in Section 4, into the
context of a Debye solid (submined to short and localized
perturbations of arbiwrary amplisude). thus obtaining our Eq.
(18). which provides an exuact and general expression of the
fraction of elastic events in such & perturbed solid,

Finally, Section 5 is devoted 10 the demonstration that
the standard Debye-Waller fraction is a particular, approxi-
mate case of our Eq. (I8} (holding for very Jow crystal
temperatures and perturbation energies). and to a compari-
son between the respective numerical results,

2. The Debye model

[n order te 6x ideas. we shall refer here to nuclear emission
processes from a crystal lattice whose mechanical eigen-
osciltation spectmun involves frequencies f = {0 oREN
and to nuclei which, afier & suitable excitation, decay with a
life-time Tye= 10775, by the emission of v radiation at
frequencies frg = LY s

Let us consider, now. &
of N atorns. Such a lattice admits, in genersl, an cigen-
spectrum of 3N mechanical oscillations, ranging between a
minimum (anguiar) frequency gy, correspoading 1o
wavelengths of the order of the erystal linear dimensions,
and a maximum frequency oy (the Debye frequency of the
fattice} corresponding to o wavelength of the order of 1wice
the equilibrivm interatomic spacings. [n the so-called Debye
maodel the spectral distribution of the mechanical ecigen-
frequencies of the lattice is approximated as a continuum by
means of a (Rayleigh-Jeuns) function $tar proportional o
o i the form

‘regular” erystal lattice composed

ar
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having assumed oy =00 In thermal equilibrium. the

average number of phonons with eigen-frequency w is
given by the expression
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where &y 15 the Bolizmann constant. T is the temperature of
the system and Ty = frwpfhy is the so-called "Debye
temperature” of the lattice.

We shall make the assumption that the mechanicat
energy levels, m. of the emitting oscillators are low cnough
1o allow a harmonic approximation of their motion. We shail
introduce moreover, for cach oscillator involved in the
emission process. the probability

s
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of starting from the sth encray level [14].

Let now the nuclei of crystal atoms be subject to random
emission provesses of y-radiation with wave vector k. By
assuming a Gaussian space distribution of the oscillators.
and taking the v-axis in the direction of the wave vector, a
well-established tradition [6.7} provides the expression of
the mean sguare path of an atom along such & direction in
the {orm

. a1 T\ [*T x ]
()= e | 4 [ l e )
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where M s the mass of the atom. Since. the emission of a
quantum  with 2 momentum 2K imparts an equal and
contrary impulse to the cmitting nucleus. and Ep =
(kY7284 represents the free recoil encrgy of the emitter,
we find it useful to introduce the adimensional ratio

Ep

-
BT
fltu‘D

thus oblaining the relation
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whose role will turn out to be crucial ater on in the present
paper.

The values of the parameter £, representing a measure
of the mtensity of the sudder shock due o the emission
process, typically range between gp=0.03 in the case of the
Miéssbaver cffcet (ME) in Fe*” and g7 3.9 in the case of the
ME in Zn"".

3. Elastic processes of a single quantum oscillator

Let usx consider now, to begin with. a single linear
oscillator. with mass M, whose classical behaviour is
deseribed by an equation of the form

ME, +ky, =0 (7
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where x.(1) is the classical position. osciliating around &, =
0. and kv, is the elastic restoring force. The standard
stationary  solutions of the corresponding Schridinger
equation may be written in the forn

i) = N,,,exp(w “ )H”,((t\') m=012..0 (&

where
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and M, is an Hermite pelynemial of order m.

Let the oscillator undergo a short and sudden impulse.
due to the emission of & y-guantum with wave vector k.
along which we assume the direction of the x-axis. 1If ¢,,(v)
is the initial wave function of the oscillator, starting from the
mith stationary state. the wave funciion after the emission
process may be written, with excelleat approximation, in the
form

Yy = explike) = ¢, exp(iiv) (9}

5o that (making use of Ref. [15)) the probability of finding
the oseillator in the same mith state afier emission takes the
form

N
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L., 18 a Laguerre polynomial of order i, and the asterisk (%)
denoles a complex conjugation,

The same result could. indeed. be recovered from the
exact solutions of the Schrdinger equasion obtained in Ref.
[12] for an oscillator submined to a space-independent force
of arbitrary amplitude. Starting from Ref, |12}, in fact, the
probability P, of an elastic {m— m) process was shown. in
Ref. [13], to evelve with tme accerding 1o the exact
expression

Poy = Pletn)] = expl—etn|L, |11 (12)
where
E(t
1) = —(—l (13)
ht,

and E(1) is the classical value of the energy reached by the
oscillator (under the action of the force} at the time 1. I the
classical oscillator of Eq. (7) is submitted to a constant and

unilorm force F for a time 7. the value of the function &(1)
may be expressed in the form {16]
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where ¢= 7fie 1= 2mlee and Eq= (Fry/2M. The final
value &{f=7) wrns out. therefoze. ta be close 1o zero when
7232 e while it reachies the maximum possible value

Ee
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M hon

{13)

when the force acts for a time shorter than, say. 0.1 1. Such
a condition is certainly verified in the case of the emission of
a single y-guanium. whose momentum Ak is equal and
opposite 1o the impulse Fr imparted to the emitter, so that
Ml
(hky /2M
BT == T R gy R ———— {16}
e,
a value which. inserted into Eq. (12). leads once more to Eg.
(10}, whose demonstration is, therefore, warranted by two
different and independent methods.

4. Elastic processes of a crystal attice

The physical features characterizing a single guantum
oscillator may now be extended to short and sudden elastic
processes ocewrming al single atoms of the erystal lattice
constdered in Section 20 represented as an aggregate of
mechanical oscillators with {requencics belonging to the
spectrum S{w) of Eq. (1), We shall assume isotropic
emission processes, and fet # (with 0 <0 <) be the angie
between the momentum fik and the instantancous oscillation
direction of the emitting nucleus. thus reducing the
transferred energy ratio of Eq. (16) 10

((nk'f/zm) cosip = epcostl

17
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By making use of the spectral distribution (1) the
probability of a recoilless process of a lattice a1 temperature
T may then be written in the compact form

I G LN 0\
PolT:ep) = — { cl(i{ d(ii) [3 («f«’w) ]
T o i iy {ehp

* Z Polen TP plen e (18}
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where P, is provided by Eq. (3). the sum ¥, is extended to

the energy levels involved in the emission process at
temperature 7. and, from Eqgs. (12) and (173,

. ‘.2” s _.30 :
F 002 i &p) =expl — ik Lm ke (19}
e whtg

Fig. | presems the plots the probability Py(Tep of a
recoiiless process as a function of the ratio T/Ty,. for a
typical value (ep == 1) of the shock energy ratio £, As shown
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Fig. L. Plot versus T/Ty of the probability P of recoitiess emission
according te Eq. (I8% for ep=1. The sum over the mechanical
energy levels mois performed. respectively, with m=0 afone n
curve A, and over the values m <4 in curve B, m <8 in curve C.
m=i2incurve D,

by Fig. 1, a sum over the values mr <8 sns out 1o provide,
in the usual range of the relevant physical parameters
(TITp <4, gp 54, adequately converging values of the
plotied function.

A simplified. but still significant, approximation of Eqg.
{18) may be obtained by means of the so-called Einstein
model, where the oscillation spectrum is reduced to a single
average “Elnstein frequency’ wrp=awy, with a suiable
choice of the parameter o a careful best 8t suggests the
assumption of a=0.7. In such an approximation. the
probability of an elastic pracess may be written in the simple
form

) b T
PUUT, ep) = p !“ d()ZP,,,((.JE. P lop fliegy 20y

"

5, Comparison with the Debye—Waller approximation

If the temperature 7 of the lattice is low enough @
involve only, or mainly. oscillaztors in the ground state (m=
0} we may assume. in Eq. (18) P,=1 (and, therefore,
P =0 for m>0) thus limiting the main conuribution to the
term containing the 00— 0 probability alone:

i-'DCOSl(}\)

21
Wt 1

Ponler B ep) == exp (_
Observing that. in the case of a guantum oscillator in the
ground state, its space distribution takes up the Gaussian
form

4% 4 oa
expl{—a“x”) (22}
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whose flexes are placed at
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we have
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The reasonable assumption |§7]
K A0® = 207 (25)

with such a term provided by Eq. (6) (based itself. as we may
recail. on a Guussian space distribution). leads now to
perform. within Eq. (18} the replacement

Z Polon TP (ot £15) — expl —F0Mcos ) (26)
m
It may be observed that, in such a limit, the replaced term
loses its o dependence. and depends on T through the
function {v*). as shown by Eq. (4.

Recalling then that

2]
Jo (f)n (!J[)

we gt:[

H ° 1,02 3
Py = Ppw(T.ep) = — [ dff expl —k~{x"Yoos0) (27}
i
which s the stundard Debye-Waller expression. By
observing morcover [15] that
= 5 2 exp(—ail2)
dff expl(~a cos 0y = { bt
.Ll P o JHZ 1)
= 57 expl a2 )Mpial2) (28)
where 1, is the modified Bessel tunction of order 0. we may

pul Eg. (27) in the alternative and compact form (to be
compared with cur general expression (18))

I:_': 2 kl 2
Pow(T.ep) = CXP(”‘ &‘ )) 1()( gl >) (29

with &3 provided by Eq. (6). We present, in Fig, 2, the
plots (versus T/T)y ) of the functions P and Ppw provided,
respectively, by Eqs. (18} and (29 (e, by our general
expression and by the standard D-W approximation), for
some typical values (e 0.05:0.3: 3.5) of the parameter ep.
represeniing a measure of the intensity of the sudden shock
due to the emission process.

It is clearly seen that the D-W expression, because of iis
limitation to the (mechanical) ground state of the emitiing
nuclel. systematically underestimates the fraction of events
leaving the lattice in the same initial cnergy level, thus
underestimating the quantum rigidity of the solid. The
differences between Py and Ppy. almost negligible at low
vilues of the emissive shock, are seen te become
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Fia. 2. Comparison of the probabilities of recoilless emisston £y
(curves fa, 2a, 3u) and Ppy (curves §b, b, 3b) plotted versus T/7),
according, respectively, to Egs. (18) and {29), Curves la. 1b
correspond to a shock parameter #np=0.03: curves 20, 2b 10 =
1.3 curves 3a. 3 1o =35

increasingly appreciabie with increasing vahues of both e
and T: this is, in conclusion. the most noticeable
contribution of the present paper, providing, therefore. a
new and more general approach to the problem of quantum
rigidity.
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