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Abstract

Exact solutions of the Schrédinger equation exist in the case of a linear oscillator submitted to a strong force exerted for atime
much shorter than the oscillation period, and lead to transition probabilities admitting an enhancement (in suitable conditions) of
the relative number of elastic processes with increasing perturbing energy. When, however, the oscillator is an atom belonging
1o a crystal lattice, elastic processes present new and interesting rigidity properties. which couid be explored by means of siow

neutron scattering and nano-technologies.
& 2603 Elsevier Science BV, All rights reserved.

1. Introduction

The basic interest, in solid staie physics, of im-
pulsive and highly localized quantum processes was
not particularly appreciated until it was experimentally
discovered that a localized and sudden event (such
as the emission, absorption and scattering of X and
y quanta, or electrons, or neutrons, or light neutral
atoms) affecting a single atom of a crystal lattice may
occur without any energy exchange at all, thus sug-
gesting a perfectly rigid behaviour of the whole lattice.
The most impressive case {(but by no means the only
one) is provided by the Mossbauer Effect (ME). Dur-
ing his experiments on the nuclear resonant absorp-
tion of the y-rays emitted in many decays of excited
nuclei {1] Mossbauer observed, indeed, that a fraction
of the emitted photons exhibited an increased absorp-
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tion when, because of the cooling applied both to the
source and to the absorber, no effect at all was to be
expected. This result was accompanied by a set of sur-
prising properties which may be summarized as fol-
lows:

(A} The observed effect occurs in a phononless (eias-
tic) way, i.e., without exciting any one of the
eigen-modes of mechanical oscillation of the lat-
tice,

(B) No shift is observed {with respect to the en-
ergy of the excited nuclear state} in the emis-
sionfabsorption lines when the linear dimensions
of the solid are above. say, (.5 pm {corresponding
to an aggregate of about 10% atoms). This amounts
to say that. in a fraction of cases (and contrary to
the remaining cases}, there is no appreciable re-
coil of the emitting/absorbing nucleus.

(C) No Doppler broadeniag is exhibited by the spec-
tral lines, whose observed line-width Iy, is very
ciose to the natural value 7y = h/1 (where T is
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the mean life-time of the excited nuclear state)
due to the uncertainty principle.

These features join in common, as we mentioned
above, a great number of sudden and localized elas-
tic processes where a whole aggregate of microscopic
oscillators behaves, in a fraction of cases, like a unique
rigid body {2]. Both wave-like and particie-like mod-
els were devised in order to predict such a fraction.
In the wave-like approach. for instance. each excited
nucleus is assumed to emit {or to scatter) an electro-
magnetic wave (or a de Broglie matter wave) which
is frequency-moduiated by the mechanical oscillation
spectrum characterizing the crystal lattice. The frac-
tion of recoilless nuclel is then obtained in the so-
called Debye--Waller (DW) form [3.4] by simply ex-
pressing, in terms of the mean-square displacement of
the nuclei, the unmodulated part of the spectrum.

It is our opinion that the rigidity exhibited in the
recoilless fraction of cases still constitutes an open
problem, which is often overlooked in different ways.
We recall, for example, that it is currently associated to
the role of the so-called reciprocal vector G. Since the
very beginning of classical crystallography. indeed,
this quantity (defined as the product of two suitable
vectors characterizing each reticular plane of a crystal)
was employed [5] for the description of visible light
reflection from such a plane. When, successively.
experiments concerning X-rays were performed, the
use of the vector G was maintained [6], as if the recoil
due the radiation could stiil be neglected. The rigidity
suggested by the experimental results was. more or
less explicitly, attributed to the vector G by assuming
it as something more than a mere abstraction: in ail
scattering events, for instance, the quantity #G is
assumed [7] to contribute in an essential way to the
overall momentum balance. It is clear, however, that
such a vector {anchored to ptolemaic-looking crystal
planes) provides a useful geometrical idealization. but
cannot be understood as an effective physical reality
in itself.

We also recall that. in the particle-like description
of a quantum system endowed with a discrete set
of bound eigen-states (labelled with the index m =
0. 1.2....). the expression of the overal} probability of
m — mn transitions (leaving the system in a final state
coinciding with the initial one) was found to present
itself, from both a logical and formal point of view,

as a generalization of the DW form factor [8}. This
observation induced many researchers to believe that
the complete theoretical interpretation of the observed
phenomena had been found. According to Ref. [8b],
for example. “The simple model of an aton moving
in an external harmonic potential altready contains
the basic features of the ME (...} The basic physics
underlving the ME {...) is all elementary Quantum
Mechanics, and should have been understood vears
before the effect was discovered™.

As we shall see in the present Letter, however, the
matter is not so simple, for at least two reasons. The
first one is that both the wave-like and the particle-like
thecries were developed in the limit of weak pertur-
bations, while the processes considered in the present
Letter do not always lend themselves to this simplifica-
tion. The description, for instance, of highly energetic
nr — m transitions with m > 0 {whose role could be
appreciable for lattices at relatively high temperatures)
is completely unattainable by a perturbative approach.
The second one, as we shall point cut in the following,
is that a theory predicting the recoilless fraction of nu-
clei is a necessary but not sufficient condition for the
interpretation of the experimental results. The behav-
iour observed in elastic processes undergone by single
atoms belonging to a macroscopic lattice has often in-
duced, indeed, to atribute to the potential acting be-
tween the atoms of a crystal lattice a rigidity which
is certainly not implicit in the postulates of Quantum
Mechanics.

We shall see in Sections 2 and 3 that exact, non-
perturbative analytical expressions (corresponding to
realistic values of the physical parameters in many nu-
clear elastic processes) may be found for the transition
probabilities of a single harmonic oscillator, We shall
consider then, in Section 4, the case of localized im-
pulsive processes undergone by an oscillator belong-
ing to a more or less complex material aggregate. We
shall stress, in Section 3, that the transmission of en-
ergy and momentum from an atom (involved in a sud-
den elastic process}) to the whole aggregate to which it
belongs appears to present peculiar properties, which
we propose, in Section 6. to explore by means of cru-
cial experiments, nowadays allowed by slow neutron
scattering and nano-technologies. The present lack
of experimental tests of phononless quantum elastic
processes is due to the fact that the main current in-
terest concerns the analysis (typically performed by
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means of neutron scattering) of the pliononic spectrum
of crystal lattices.

2. Exact analytical solutions of the Schridinger
equation

As it was very well stated by Chester [9] “there
are no ideal harmonic oscillators. But this idealizarion
capture the essential behavionr of many real systems.
It is a computationally tractable model for what is
encountered in nature”. Let us consider, in this spirit,
the case of a unidimensional harmonic escillator of
mass M, submitted to a space-independent force F ()
of arbitrary strength. Such a force could represent,
for instance, either a long range interaction, or a
sudden absorption, emission or scattering process.
The classical differential equation for this problem is
obviously of the following form:

ME+kxe=F). hH

Exact (non-perturbative) solutions of the Schrdinger
equation corresponding to the quantum version of this
problem,

B oAty

2M 8x%
were obtained almost half a century ago by Kerner
[10] in a paper which did not obtain the diffusion it
deserved. We shall give here a somewhat modified
version of such a precedure.

Starting from a guannon stationary state of the
osciliator for F(r) =0, its energy

P, L 0y
+{—jfu —.1F(r)]¢_1ﬁ73—,~, (2)

W, = (m + ;)hwc,

Vi/Mandm=10,12,,.., 3)

is assumed to be exactly known, so that the time
at which this energy has been measured is totally
indetermined. The closest classical case is that of
an oscillator with a known total energy Etor = W,
and a completely indetermined space position within
the range +xq, with xyg = /ZETo7/k. The classical
probability &P for the oscillator to be found in the
space interval dx is given by the relation

EI_P__ t
dy

with ag =

(4)

R
m ,\() X

In the quantum case, the possible stationary probabil-
ity distributions are given by

dpP eyl
P . N,,,H,,,(a.\')e -

where

/ o M,
Ny = W o= W};m, (6}

and the functions H, are Hermite polynomials. In
any case, as long as no force is applied, the center of
the probability distribution is placed at x; = 0, with
X¢ = 0. The basic idea is now to “couple” the quantum
sclution, when an arbitrary force F{(r) is applied, 1o
the corresponding classical trajectory x. (1) of such
a center, obtained from Eq. (1). This “coupling” is
obtained by passing from the space variable x to the
variable £ = x — x.{#), and looking for solutions of
Eq. (2) in the quite general form

W(x, 0 =®E nexpligE.n], (7

where the function g(&, 1) remains to be fixed.

Starting then from Eq. (2), we obtain an equation
of the form

R R de

Alg,t B HP =1h-—. 8

531 5er TAE ) §+ EN®=ihi—. ()
As far as the coefficient A(§, 1) is concerned, it turns
out to be given by the relation

n* ag
AE. D =tht ) —1i——=
(§.1) =1ihxc{r) 11wag= e
and it is expedient to assume the function g(€.1) ina
form allowing to make this coefficient vanish. i.e.,

glE. = [\L(f)«f + Q0] (10)

where Q{f) is an arbitrary function of time alone. By
means of the choice

Q1) = xe(Dxe (1), ()

and by means of a repeated use of Eq. (1), the

coefficient B(&., ¢} takes up, in its turn, the simple form
_ ke

B(§, 1) = —-‘-3(1‘)

M2kl

with 5(1') o —7— .
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Eq. (8). in conclusion, turns out to be writien in the
form

B h.? E_
M ag

a well-known equation (anatogous to the one of the
harmonic oscillator) which may be treated, as usual,
by variable separation, looking for a solution of the
form @ (&, ) = X{E)T{r). Going back, then, to the
x-variable and to the wave function ¢ given by Eq. (7)
we obtain, for Eq. (2), the general sclution

W= (v, 1)
;I_I-[A/fxi'c(!) — /5{?)&! -— vaf}}
0

>dmhb—%m“m4—¥h—&mf]

{14
with m=0,1,2,.... As long as F{r) =0, the (clas-
sical) coordinate x.(7) of the center of the probabil-
ity distribution remains equal to zerc together with its
time derivative x.(r) and, as shown by Eq. (14), the
harmonic oscillator remains in the standard stationary
ni-state. When, however, a force F(r) £ 0 is applied,
the solution (14) evolves in strict association with the
classical motion x.(t}, whose general form is pro-
vided, for instance, in Ref. [11]. Eq. (14} shows then,
in Kerner’s words [10], that “the oscillator dances a
quantum dance centered at the instantaneous classi-
cal position™.

The general solution (14} may be expressed in
terms of the standard orthonormal set of eigen-solutions
of the unperturbed quantum oscillator

ad
] = e, (13
ot

= Ny exp

{x,f) =N, exy(—;i an) H, (ax)e”“%“':

n=0,1,2,..0 (13
in the form
o
Y (%, 1) = Z Ay (D (x, 1), (16)

=)
We have in fact, after straightforward calculations:

Apn(t) = f Yinie; dx

Ny Ny [ E(f)

o

1:(“[:1 Wt

!
M.
fﬁ(i‘)(ff‘i‘ ‘C‘L}}Gmns

0

(17)
where the asterisk labels a complex conjugation, the
term

1 (kx} Ml
E(ty = (—+ ) (18)

) 7

represents the total energy reached by the classical
oscillator at the time ¢, divided by the quantum energy
ficwe; the term

oo
Gun = f dp exp(_Pz) Hyulp+y]Hdp+21 (19
-0

is a tabulated integral (see, for instance, [12}) which
may be expressed in terms of associate Laguerre
polynomials:

2 - -
?."J'['U"nr!y" msz m{_z},:)

nZ=zm),

G = 2"’(JT 12y !;’”"” L™ —2vz) 0
(n <), ! .

and

Laxe(n) L M) .

‘T 2ah T

“aye=en.  bi=lat=E e

According to Eq. {17) the oscillator, starting from
an unperturbed stationary state m with x .0 =0) =
Xe{t = 0) == 0, develops, under the influence of the
torce F{(t), the probability

Pan(t) = EArml () |2

! 2
= 2] ™" fexp( <22 )i fec0]

o 22

(assuming n = m) of being found at the time r in
any state n (possibiy, but not necessarily, coinciding
with the initial one, ). Such a probability is seen to
depend in an essential way on the total energy attained
by the oscillator in the corresponding classical case.
The probability £, of the reverse transition turns out
to coincide with Py, In particular, the probability of
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remaining in the initial state m is found by taking
i = in Eq. (22}, so that

.

Poum (1) =E_E(”|L,”[E(f)]| (23)

since the associate Laguerre polynomial L) reduces

to a standard Laguerre polynomial L,,. It must be
stressed that, in the present non-perturbative theory,
the energy ratio £(1), provided by Eq. (18), was never
assumed to be a small quantity.

3. Sudden elastic processes undergone by a single
oscillator

The general solution (14) may be applied to the
particular case of an impulsive strong perturbation
undergone by a single oscillator, by assuming that a
constant force F of arbitrary strength is exerted for a
very short time 7 < 2 /w, as it is quite plausible in
view of emission, absorption or scattering processes.
The total energy, E,, delivered to a classical oscillator
starting from x.(r =0) = 1. ( = ) =0, is given by

(Fzy
“T oM
Assuming. for simplicity sake, that the oscillator,
submitied to such a shock, has no time to substantially
change its initial position x. = (0, we may employ the
solution (14) with

2E.
xc(i)m,f_—f&sinwct, (25)
) [2E,
e = —_— . 7
I o7 COS et (26)

t

E.
f&(r)dr: 5 < sin2wet, 27

2w,
]

(24)

and make use of the transition probability (22), with
&= hﬁj‘u. The effect of the shock is that of inducing a
classical-tooking oscillation of the probability distrib-
ution (see Ref. [13] for the simple case m = 0).

Such an oscillating distribution is a superposition of
ali the stationary states of the unperturbed oscillator.
The probability, in particular, for the oscillator, of

remaining in its initial state m is obtained from

0.5
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Fig. 1. The probability Py of a sudden process leaving the
oscillater in its initial state m s plotted (for m =0, 1, 2} versus the
energy ratio £ = -

Eq. (23) in the form

. E(_- Ec
Por = E‘\P( o, ) Ly (hwc)

By plotting the function P, versus ¢ = ﬂ%_l (see
Fig. 1) it may be verified that it exhibits, for £ > 1,
a set of m maxima which no perturbative approach
(with & < ) may predict, although values of £ even
much greater than unity may be currently encountered
in the family of elastic processes we are considering
here. Very large values of the energy ratio & may be
reached. in fact. in the case of neutron scattering from
a crystal lattice; and considerably large values of such
4 parameter may be attained even in the case of the
Mossbaver Effect. Making use. for instance. of the
parameters corresponding to the ¥ emission occurring
in excited Zn® (M = 1.11 x 102! @), where the
epergy of the emitted quantum amounts to £, =
93.26 keV, the free recoil energy is given by E, =
E;‘!,/EI'VICE = 6.99 x 1077 eV, and (assuming for w,
the relevant Debye frequency) flax: = 2.01 x 1072 eV,
we obtain £ = 3.47.

In the case of the first, and most energetic, ¥
emission from excited nuclei of Fe¥7 (where M =
9.46 x 107 g, E, = 13632 keV, E. = 1.75 x
107! eV B = 3.62 x 1072 eV) we obtain & = 4.8.
Let us observe, however, that in the second, and less
energetic. y emission from Fe®’ (which is the most
commonly employed in Mossbauer diagnostics) we

-

(28)
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have £, = 14.412keV, E. = 1.95x 1077 eVand e =
0.054, thus allowing a simple perturbative approach.
It must be noticed that the maxima of the function
Pum may be physically reached only by means of
a strong shock occurring in a tdme much shorter
than the “relaxation time” of the oscillator. A slower
interaction would in fact progressively reduce to zero
the existing population of excited states.

It is worthwhile to recall here that in Ref. [14]
the behaviour of single orbital electrons was approx-
imated by means of unidimensional harmonic oscilla-
tors, as allowed by the small ratio between the electron
and nuciear mass. The Schrédinger time-dependent
equation was shown to lead to different possible en-
ergy transitions, and the probability, for the electron,
of remaining in its initial state was seen to be enhanced
in the case of a strong and sudden force, both in the
case of usual atoms and for Rydberg artificial atoms,
submitied to the electric field of an intense laser beam.
This ephancement was also confirmed by experimen-
tal tests, without remarking, however, that it corre-
sponded to the maxima of the function P, provided
by Eq. (28}, and therefore to an elastic process.

Let us also recall that Ref. {15] presented the
experimental results of the application of a strong and
uitra-short electric field due to a laser beam injected
into a diatormic gas. The probability of molecular
dissociation was shown to decrease with increasing
intensity of the beam, a fact which may be attributed
to the presence (at high enough values of the energy
ratio g, and for m > 1) of maxima in the function Py,
describing the probability of elastic scattering events.

4. Sudden elastic processes in crystal lattices

Let us pass now to the case of sudden and local-
ized elastic processes undergone by atoms belong-
ing to a crystal lattice, composed of N atoms. Each
atom of such a crystal is subject to mechanical oscilla-
tions distributed according to a spectrum of 3¥ eigen-
frequencies, ranging between a minimum value, gy,
corresponding to waveiengths of the order of the crys-
tal linear dimensions, and a maximum value wp (the
“Debye frequency™), corresponding to wavelengths
equal to twice the equilibrium interatomic spacings.
In the so-calied Debye model the spectral distribution
function of the eigen-frequencies of the lattice is ap-

proximated as a continuum by means of a function
f(w) proportional to w” (according to the Rayleigh—
Jeans calculation) in the form

bl
Floy =32 (29)
“p
such that ‘[;;"” flw)dew = 1. having assumed wyin = 0.
In the thermal oscillation spectrum, the average
number of phonons with eigen-frequency w is given
{at temperature T') by the expression

i 1

explho/kgT) —1 exp(%f-}/f—‘,:,’—.g) -1

w, T) = ,

(30)
where kp is the Boltzmann constant and 7Tp = fiwp /kp
is the “Debye temperature”,

Clearly enough, the function #i tends to zerc in
the Iimit 7/Tp ~» 0. Below the temperature Tp
the average phonon density is restricted therefore
to a rather narrow low-frequency range. The entire
spectrum. on the contrary, is always present and active
in the zero-poinr {phononless) motions. In stationary
conditions the zero-point background has therefore the
possibility of acquainting each atem of the crystal
with the characteristics of the whaole lattice to which
it belongs, including its irregularities, which strongly
affect the spectral structure of the crystal osciliations.

Coming now to the case of elastic processes, i.e.,
of evenis leaving the lattice in its initial energy state.
we shall make the assumption that the energy levels m
are low enough to allow a harmenic approximation of
the oscillations. and introduce, for the atom iavolved
in the emission, absorption or scattering process, the
probability P, of been found in the mth energy level
of mechanicai oscillation at the eigen-frequency w
[16]:

"’i o

= (1 _%_,‘l)m«i«l '
where the function /i{w/wp: T/Tp) is provided by
Eq. (30). Therefore, P, —= 0 when w/wp — 0.

The probability P, of an elastic process {i.e., of a
process leaving an oscillator in its initial energy level
m} is provided, in its turn, by our Eq. (28) with o, = w.
and may be written in the form

£n :
o2
m ({U/{UD )

Ep
Pt (%. ED) - EKP(“‘" )

PHI( . J“;)

op* Th

(31

. (32
tw/wp (2)
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where

& E. w E,
gD = E e D — ——— =
wp fwep fiwp

(33

and E, is the free receil energy defined in Eq. (24).

Making use, now, of Eq. (29), we may finally write
the probability Py of an elastic process (undergone by
any atom of the crystal lattice, and leaving the crystal
in its initial energy state) in the compact form

1
P,:[(%:ED)=/(E(£U/(UD) F(l' %}-:ED), (34)

oy’
0

where ew/ewp is the integration variable, and

F(Z: L:en)

2o
)] o
= 3(2’;‘;‘)‘) Z Pm(;ﬁ%: %E';)Pmm(i%: ED) (33)
np==l}

with P, given by Eq. (32). It is seen that. because
of Egs. (30) and (31), the lowest eigen-frequencies of
the oscillation spectrum give almost no contribution
to the probability of elastic processes. In the limit
ep — ( the function P, provided by Eq. (32} may
be approximased in the form

Pounm{w/wp:ep = g™ | L (&) lz
%exp[~—(l +2m}s] {36)

(with e = m;:l’m), which, introduced into Eq. (35),

leads to an expression holding in the weak interac-
tion limit, as long as the role of the i maxima of the
function P, is negligible. The use of the full expres-
sion (32) is required, however, in strong and sudden
processes, when these high energy maxima become
physically accessible and significant. For comparison,
the Debye—Waller fraction may be expressed, in one
of its most simple forms. as

3
expl — €D

forT=0K,

w‘fr«w, =
Pow (71 en) exp(«—ﬁsg%«) (37)
D

T

In Figs. 2-4 we plot versus T/7p the function
Py (T/ Tpt ep) provided by Eq. (34), with Py, given

f T 1
OT—D>> 5

Pel
1.0

0.8

G6

0.4

0.2

! § ! !

0.0 1.0 2.0 30 T/Tp
Fig. 2. Plot versus T/Tp (for ¢p = 0.03, with ¢p defined in
Eq. (33)) of the probability of a process leaving the erystal lattice in
its initial energy state, under the action of a sudden shock underzone
by one of its atoms. Curve u represenis the “exact” FRinction
FPup given by Eg. (34); curve b represenis its weak interaction
Iimit: curve ¢ represents the Debye—Wailer approximation given by
Eq. (37).

0.3

£5098 |

0.0 ; ; . ;
0.0 1.0 2.0

3.0 T/ T,

Fig. 3. The same a5 in Fig, 2, with ep = (.08,

both by Eq. (32) (curves a) and by its weak interaction
limit (36) (curves b), for different values of the
parameter epy defined in Eq. (33). The DW probability
factor (37} is represented. in its turn. in curves c, for
the same values of ep.

Fig. 2 refers to a very low value of ep (ep = 0.03,
corresponding to the lower energy emission in Fe'),
and shows that, in this energy range, the curves 2 and b
almost coincide, and the DW curve c itself is not very
different from a and b.
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Fig. 4. The same as in Fig. 2, with en = 1.98

In Fig. 3. obtained with g = 0.98, the curves a
and b are quite close to one another, showing that the
energy range affected by the role of the maxima of
P 1s not yet reached. The DW curve ¢, however,
remains quite lower than the others, clearly showing
that its validity is limited. for any temperature, to very
low values of gp.

In Fig. 4, obtained with gp = 1.98, the “exact”
curve a strongly diverges from the approximated
curve b, exhibiting 2 maximum due to the increasing
role (with increasing temperature) of the excited states
with mt > 0. The DW curve c remains, of course, quite
lower.

5. Momentum and energy fransmission in crystal
lattices

The knowledge of the non-perturbative expression
of the transition probabilities is, in any case, a neces-
sary but not sufficient condition for an answer to the
problem of the propagation {even to the closest atoms)
of the momentum due to a sudden process undergone
by an atom belonging to an aggregate of mechanical
oscillators.

Let us observe that in Classical Mechanics the pos-
sibility that a sudden shock, reversing the momentum
pr of the oscillator into —p, (and therefore leaving
its kinetic energy unchanged} does indeed exist, but is
endowed with a vanishing probability. In the case of
Cuamtum Mechanics, on the other hand, there exists a
finite probability, for a single ideal oscillator, of “tak-

ing in” the momentum due to the shock while remain-
ing in the same initial energetic state. This finite quan-
tum probability is granted, indeed. by the momentum
spread (ranging between p, = $o0) pertaining to each
siationary state: in the ground state, for instance, we
have from Eg. (15}

] wet @t
uplx. 1) = l/, exp IT - *éw,%
"a-) ihy

e\p TEARY exp{- Ky oo
= / dky ——==2"e™ Y (38)
Var Ty

—C

with &, = p./k. The momentum due to the shock
is effectively “taken in”, however, as well as in the
classical (and highly improbabie) energy-preserving
case, by the external potential itself, behaving like an
unlimited and instantaneous momentum absorber,

In the case of a material aggregate of osciilators,
on the other hand, the critical role, and the peculiar
properties. of momentum transmission occurring in
elastic events may be adequately described by the
following brief review of the experimental evidence.

« Let us consider, to begin with. Compton’s papers
[173 on his famous experiment of X-ray scatiering
by the atoms of a graphite crystal. The observed
scattered radiation spectrum includes, as is well
known, two different peaks:

— the first peak {corresponding to the standard
Compton effect), when plotted versus wave-
length. is upshifted with respect to the incident
radiation, and is currently explained as a pho-
ton scattering (conserving both energy and mo-
mentum in each single microscopic event) by
the most external, and almost free, orbital elec-
trons:

— the second peak, in its turn, is unshifred and
centered around the incident wavelength itself.
and is attributed to sirongly bound orbital elec-
trons. which the impinging photons may be
unable to excite to the next energy level. In
this second case the entire atom behaves like
a unique rigid body, with an effective scattering
mass thousands of times larger than the electron
mass,

s When an incident particle is scattered by a di-
atomic molecule, it often behaves, once more, as
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a rigid body (see, for instance, [18,19]), preserv-
ing its initial internal energy level. After hav-
ing mixed, for instance, a diatomic gas with a
rarefied, mono-atomic one at a higher tempera-
ture, the thermalization time of the two gases (re-
vealed by a “rapid” bolometer) is seen to be much
shorter than the excitation time (revealed by in-
frared spectroscopy) of the vibrational internal
levels of the diatomic molecules. This is a clear
proof that a diatomic molecule colliding with a
mono-atomic one has a high probability of recoil-
ing as a whole, i.e., of exhibiting a perfectly rigid
behaviour.

s Analogous features were described in Ref. [20] in
the case of 4-atomic molecules.

o Passing now io the case of an aggregate of a very
large number (= 108y of atoms, let us consider,
for instance, the nuclear scattering of thermal
neutrons {v &~ 10% cm/s) by a crystal composed
of light nuclei, such as, for instance, beryllium. It
may be verified with a high degree of precision
that a part of the colliding neutrons does not lose
any energy at ali, thus interacting with the whole
mass of the lattice. As we know, the neutron
crossing time At through the region defined by the
range of the nuclear forces (= 10™'* cm) may be
estimated (see, for instance, [217) around 10~1% s
Although a mechanical “message” between an
atom and the rest of the lattice can only travel
at sound’s speed, let us admit for a moment
{as proposed in Ref. [22]) an electromagnetic
nature of such a “message”. In the time As an
electromagnetic signal may only cover a distance
of the order of 3 x 1077 cm, even lower than the
average spacing between two atoms in a molecule
or in a crystal lattice, which is around 1 A.
Not even an electromagnetic message may allow,
therefore, the transmission (even to the closest
atoms of the lattice) of the force required to
provide the rigidity implied by the absence of any
recoil.

6. Discussion
There exists, as we have seen, a wide display

of experimental results based on nuclear absorption,
emission and scattering processes occurring at single

atoms of material aggregates ranging from small to
very large total mass, showing that these processes
(in a predictable fraction of cases) do not excite
any internal oscillation mode: neither of the single
involved atom, nor of the whole lattice.

When the total mass of the aggregate is small
enough, its recoil, due to the mechanical shock,
appears to occur with an instantaneous transmission of
energy and momentum {o its barycenter. When, on the
other hand, the total mass is large enough, these elastic
processes occur without any energy variation, as if
the solicited oscillators had instantanecusly shared the
shock with a standing, unlimited momentum absorber.
In any case, the relevant spectral lines show that the
emitted (or scattered) particles or quanta “know”, in
their apparently instantaneous interaction, the mass
of the whole aggregate to which the emitting (or
scattering) atom belongs. It seems, in other words,
that the “information” level granted by the zero-~point
oscillation spectram in starionary conditions could
be maintained “in real time” in transient conditions.
We recall, in this connection, that epergy exchanges
below the zero-point level appear to be present in the
excitation of the so-called “bee crystals” of He* [23]
during neutron scattering experiments.

Although we recall that Wheeler and Feynman [24]
have devised a mechanism (based on advanced and
retarded waves) of information/confirmation exchange
of messages, allowing an apparently instantaneous
sharing of physical “knowledge” between the particles
of a complex guantum system, we observe (before
invoking these extreme theoretical approaches) that
there are several points of the present paper which
could be fruitfully explored by means of the recent
development of nano-technologies.

The intermediate case, for instance, of impul-
sive processes occurring in nano-tubes of [10°-10*
atoms the so-called “cylindrical fullerenes”, providing
a powerful experimental tool for the analysis of uni-
dimensional quantum processes [25] could be stud-
ied with slow neutron scattering experiments. The
phonons created in the inelastic fraction of scattering
events may be detected by means of microscopic su-
perconductive Josephson junctions [26], thus aliow-
ing to discriminate elastic (phononless} from inelastic
(phononic) events, in coincidence with the revelation
of single scattered neutrons and with the measurement
of their energy.
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Concerning possible {elastic} m1 — m transitions
with m > 0, we may imagine experiments of slow
neutron scattering by a fullerene-like cluster [27,28]
(composed of & 10° atoms) suspended in a cavity
by optical levitation [29-32]. An infrared, photon by
photon measurement of the temperature of the cluster
could reveal the spectrum of the excited vibrational
modes of the cluster. These modes should be rather
easily identified because of their small number, due
to the high symmetry level of the cluster structure.
In the meantime, the transitions between these mades
(induced by a monochromalic slow neutron beam,
with energy of the order of 107°-10"' eV) could
be revealed both by the time-resolved evolution of
the cluster infrared radiation spectrum itself and by
the measurement of the energy variations between
incoming and outgoing neutrons, performed by means
of a spin-echo neutron spectrometer, nowadays able
to evidence variations even lower than 1079 eV [33].
By varying the energy of the injected neutrons, and
by measuring the corresponding radiation spectra. one
could verify the energy dependence of the transition
probabilities.

The same experimental setup could allow the opti-
cal measurement of the mechanical recoii of the clus-
ter itself, when a photon-by-photon analysis a of the
time-resolved emission spectrum reveals that no exci-
tation of internal oscillation levels has occurred. This
would provide a direct evidence of the (possibly in-
stantaneous) transmission of energy and momentum to
the center of mass of the cluster.

It is clear, in conclusion, that phononless features
such as the ones prospected in Fig. 4, and character-
ized by guite low probabilities, may be observed only
by means of ad hoc experiments, up to now neglected
because of their little applicative interest. This does
not means, however, that these ad hoc experiments
cannot be performed in the frame of present time tech-
nology.
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