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The starting “main road” established by de Broglie’s and Schrödinger’s discovery of matter waves and of their eigen-functions has
branched off in different “subroutes”. The most widely accepted one is Standard Quantum Mechanics (SQM), interpreting the time-
dependent Schrödinger equation as the basic evolution law of a wave-packet which represents the simultaneous probabilistic
permanence of a particle in its full set of eigenstates. Another "subroute" is offered by Bohm’s Mechanics, able to reproduce the
same results of SQM, while interpreting the stream-lines of the probability current density as the "quantum trajectories” of the
moving particles.
Reminding that the so-called “quasi-optical approximation” represents a standard mathematical method allowing a first-order ray-
based treatment of stationary wave-like features, we present here an exact wave-mechanical “subroute”, based on the observation
that the time-independent Schrödinger equation (as well as any other Helmholtz-like equation) may be treated, bypassing the quasi-
optical approximation, in terms of a set of rays mutually coupled by a function (which we call “Wave Potential”) encoded in the
very structure of the Helmholtz equation. These rays, reducing to the classical point-particle trajectories when the Wave Potential is
neglected, lend themselves to be interpreted as the exact wave-dynamical trajectories of classical-looking point-particles associated
with the de Broglie-Schrödinger matter waves. The role of the mono-energetic Wave Potential, acting perpendicularly to the
relevant momentum of the moving particles, is to “pilot” them without any energy exchange: a property which isn’t shared by the
well-known "Quantum Potential” of the Bohmian theory, involving the entire spectrum of possible eigen-energies of a wave-packet.
This property turns out to allow the numerical computation of the particle trajectories, which we perform and discuss here for
particles moving (under the guiding rule of the Wave Potential) in many different force-fields, such as a constant external field and
the fields due to a potential barrier, a potential step and a focalizing potential, respectively.

PACS:  03.75.-b, 03.65.-w, 03.65.Ta, 78.67.Lt

 I.  INTRODUCTION

As is well expressed in Ref. [1], "the knowledge of
several routes and their connections is always helpful when
traveling through the quantum territory". Different "routes"
may complement each other, indeed, in different regions of
that territory. But from which common “main road” shall
the routes branch off? We think that the universally
accepted common ground (simply called here “Wave
Mechanics”) is given by:

1. de Broglie's seminal relationp = k
��
ℏ  [2, 3], verified

beyond any doubt by the Davisson-Germer experiments
[4], and establishing, once and for all, the objective
reality of matter waves and the wave-particle duality;

2. the time-independent Schrödinger equation [5, 6],
bypassing (with its eigen-fuctions and eigen-values) the
heuristic prescriptions of the "old" Quantum Mechanics,
and

3. the time-dependent Schrödinger equation, open to a
wide spread of interpretations and developments.

Before passing to exploit, in Sect.V, a "route" of our own
(the "Wave Potential" route), grafted on the common "main
road" of Wave Mechanics and allowing an exact,
trajectory-based treatment of matter wave dynamics, we
shall begin by a brief summary (in Sects. II-IV) both of this
"main road" and of its most successful "routes" (Standard
Quantum Mechanics and Bohmian Mechanics) in order to

develop a common language allowing a comparison (in
Sects.VI and VII) of aims, methods, interpretations and
results.

II. WAVE MECHANICS

We shall refer, in order to fix ideas, to the case of non-
interacting particles of mass m and total energy E, launched

with an initial momentum 0p
�

 (with 0p = 2 m E ) into a

force field deriving from a time-independent potential field
�

V(r) . The classical dynamical behavior of each particle is
described, as is well known [7], by the time-independent
Hamilton-Jacobi (HJ) equation

2( S) = 2 m[E -V(r)]∇
� �

 , (1)

where the basic property of the HJ function S(r,E)
�

 is that

the particle momentum is given by

p = S (r,E)∇
�� �

. (2)

In other words, the (time-independent) classical HJ
surfaces S(r,E)= const

�
 are perpendicular to the

momentum of the moving particles, and pilot them along
stationary trajectories, according to the laws of Classical
Mechanics. Louis de Broglie, reflecting on the analogy
between the Maupertuis and Fermat variational principles
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[2, 3, 7], was induced to associate each material particle
with a suitable “matter wave” of the form

-i ω t i [φ(r,ω)-ω t]ψ = u(r,ω) e R(r,ω) e≡
�� �

, (3)

with real amplitude R(r,ω)
�

, real phase φ(r,ω)
�

 and

E = ωℏ , (4)

according to the basic Ansatz

S(r,E) / = kp / φ≡ ≡∇ ∇
�� ��

ℏ
�
ℏ , (5)

an Ansatz viewing the HJ surfaces S(r,E)= const
�

 as the

phase-fronts of these matter waves, while maintaining the
piloting role played in Classical Mechanics.
The successive step, due to Schrödinger [5, 6], may be very
simply performed [8, 9] by viewing Classical Mechanics,
represented here by Eq. (1), as the eikonal approximation of
a suitable Helmholtz-like equation that is immediately
obtained, starting from Eqs. (3)-(5), in the form

2

2 2m
u(r,E) + [E -V(r)] u(r,E)= 0∇ � � �

ℏ
, (6)

which is the usual form of the time-independent
Schrödinger equation, holding for matter waves associated
with particles of mass m moving in an external stationary
potential V(r)

�
. This equation admits, as is well-known [8,

9], a (discrete or continuous, according to the boundary
conditions) set of energy eigen-values and ortho-normal
eigen-modes, which we shall indicate respectively
(referring for simplicity to the discrete case) by 

n
E  and

( )nu r
�

. From Eqs. (3)-(6) we get both the ordinary-looking

wave equation
2

2 2
2 2m ψ
ψ = [E -V(r)]

E t
∇ ∂

∂
�

, (7)

describing the dispersive character of the de Broglie matter
waves associated with particles of total energy E, and the
relation

2m 2m 2mi E ψ 2mi ψ2
ψ - V(r)ψ = - E ψ - = -

2 2 ω t t
∇ ∂ ∂≡

∂ ∂
�

ℏ ℏ ℏℏ ℏ

that is

2
2

2 m

ψ
- ψ + V(r) ψ

t
i = ∇∂

∂
ℏ �

ℏ , (8)

which is the usual form of the time-dependent Schrödinger
equation. Any wave-like implication of Eq. (8) (which is
not, in itself, a wave equation) is due to its connection with
the time-independent Schrödinger equation (6), from which
it is obtained. Eqs. (6) and (8) arise therefore from a
combined de Broglie’s and Schrödinger’s extension of

Classical Mechanics, and don't need to be assumed (as it's
sometimes done) as postulates.
By defining both the eigen-frequencies /

n n
Eω ≡ ℏ  and the

eigen-functions

n n
n n n

-i ω t -i E t /
ψ (r,t)= u (r)e u (r)e≡

ℏ� � �
(9)

it's a standard procedure to verify that any linear
superposition (with arbitrary constant coefficients 

nc ) of

the form

nn
n

ψ(r,t) = c ψ (r,t)∑
� �

,    (10)

is a (deterministically evolving) solution of the time-
dependent Schrödinger Eq. (8). Since Eq. (8) is not a wave
equation, the composite function (10) cannot represent an
individual wave, revealable by a single Davisson-Germer
experiment: it represents, in principle, a collection of
individual de Broglie’s matter waves ( , )

n
r tψ �

, each one

satisfying the wave equations (6) and (7) for an appropriate
energy value En . Such a composite function could provide
for instance a weighted average taken over the eigen-
functions ( , )

n
r tψ �

, where the coefficients cn (in duly

normalized form) would represent either a set of
experimental results (in view of a statistical treatment) or
an ad hoc mathematical assembling, in view of the
construction of a particular “packet” of wave-trains.

 II.  STANDARD QUANTUM MECHANICS

Renouncing - both because of the uncertainty principle and
because of the energy-independence of Eq. (8) - to a
classical-looking particle dynamics, Max Born proposed,
for the function (10), a role [10] going much beyond that of
a simple superposition, assuming it to represent the most
complete possible description ("Born's Wave-Function") of
the physical state of a particle whose energy is not
determined, in the form of a simultaneous permanence
(before observation) in its full set of eigenstates, according

to the probabilities 
2

nc . The continuous and deterministic

evolution of the "wave-packet" ψ(r,t)
�

 according to Eq. (8)

was associated to the further assumption of a discontinuous
and probability-dominated process, after interaction with a
measuring apparatus, causing its “ collapse” into a single
eigen-state. Even though “no generally accepted derivation
has been given to date" [11], this "Born Rule" led, together
with the uncertainty principle, to Standard Quantum
Mechanics (SQM), an intrinsically probabilistic conception
of physical reality which was widely accepted as the pillar
of any further development of microphysics.
Any system of N particles with position vectors 

1 N
r ,... ,r
� �

 is

assumed to be described [8, 9] by a single, 3N-dimensional
Schrödinger equation with a single Wave Function
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1 N
ψ( r ,... ,r ,t)
� �

, as if the N particles were the components

of a single physical object: an Ansatz going much beyond
de Broglie's intuition of objective 3-dimensional single-
particle matter waves, on which both Eqs. (6) and (8) are
based. The relevant time-independent and time-dependent
Schrödinger equations (6) and (8) were heuristically
“extended”, respectively, in the form

)1 N
k k

2
2 V r ,...,r ] = 0k2m
ψ E ψ(+[

1..Ν
∇

=
∑ − � �ℏ

(6’)

and

)1 N

k 2

2
2

i V( r ,...,r ψk
k

ψ
- ψ +

t m1..Ν

= ∇
=

∂
∂ ∑

� �
ℏ

ℏ
, (8')

where E is the total energy of the particle system, and the
potential energy )1 Nr ,...,rV( � �  keeps both external fields

and internal interactions into account. Eq. (6’) is seen to
agree with Eq. (8’) if, and only if, we “extend” to

1 N
ψ( r ,... ,r ,t)
� �

 the same expression (3) which was

originally conceived by de Broglie for his single particle

matter waves: -i E t /ψ = u(r,E) e ℏ�
 , so that

Eψ
ψ

i =
t

∂
∂
ℏ . (11)

 III.  BOHMIAM MECHANICS

The emergence of the SQM tenets was accompanied by
de Broglie’s interpretation presented in his doctoral Thesis
[3] and by Madelung's hydrodynamic alternative [12], and
followed by Bohm's theory [13-18] (stemming from a de
Broglie's suggestion [3]), by de Broglie's return with his
"double-solution" proposal [19-21] and by Takabayasi's
stochastic approach [22]. The most successful
developments were connected with the Bohmian theory
[13-18], kept alive for many years by Holland’s book [23],
and were mainly due to the applicative requirements of the
physical-chemistry community [1, 24-32]. In Bohm's
theory, a replacement of the form

i G(r,t) /
ψ(r,t)= R(r,t) e

�
ℏ� �

, (12)

with real ( , )R r t
�

 and ( , )G r t
�

, is performed into the time-

dependent Schrödinger Eq. (8), assuming 2R  to represent
(in the attempt to deviate as little as possible from the
Copenhagen orthodoxy) "the probability density for
particles belonging to a statistical ensemble" [13]. The
replacement (12) leads to a fluid-like equation system
(which we shall omit here for brevity sake) coupled by a
time-dependent “Quantum Potential” term of the form

( , )
( , )

2 ( , )

2 2

B

R r t
Q r t

m R r t

∇= −
�

ℏ�
�  , (13)

depending on the entire set of eigen-fuctions required by
the Born Wave Function ψ(r,t)

�
. The replacement (12) -

shaped on Eq. (3), i.e. on de Broglie's mono-energetic and
experimentally tested matter waves - aims at dressing the
Born Rule with plausibility by depicting ψ(r,t)

�
 as an

individual and objective physical wave, hopefully sharing
and generalizing the same experimental evidence of de
Broglie’s pilot waves (3), although it is not even the
solution of an ordinary-looking wave equation. According
to Ref. [27], "Born had an absolutely correct (...) intuition
about the meaning of the Wave Function, namely that it
guides the particles and it determines the probability of
particle positions (...). Born is close to Bohmian
mechanics".
Being the computation of ( , )

B
Q r t
�

 a very hard matter (it

was built, for instance, by means of the iterative solution of
an infinite set of complex equations [26]) it is often
bypassed, in modern Bohmian Mechanics [1, 27], by
assuming an equivalent, but more tractable, "guidance
equation” of the form, suggested by de Broglie himself [3,
19-21]

* *

*

)

2

dr(t) G (r,t) ψ
=

dt m mi ψ

ψ ψ -ψ ψ

mi ψ ψ

Im (
∇ ∇≡

∇ ∇
≡

� �� �

� �

ℏ

ℏ
(14)

where 2* 2
ψ ψ ψ R≡ ≡ , and the analytic expression of

( , )G r t∇
� �

 is obtained from Eq. (12). The time-integration of

Eq. (14) is performed by means of the feedback input, step
by step, of the function ( , )r tψ �  obtained from the

simultaneous solution of the relevant time-dependent
Schrödinger equation (8). Recalling that the quantity

* *J (ψ ψ -ψ ψ )
2mi

∇ ∇≡
� � �ℏ

 represents, in terms of ( , )r tψ � , a

probability current density [7, 8], the "guidance velocity"

/ 2d r(t)
J R

dt
≡

�
�

 turns out to be directed along "the flux lines

along which the probability density is transported" [27].
The resulting r(t)

�
 is interpreted however as representing

the exact quantum trajectory of a single particle, piloted (à
la de Broglie) by the Born Wave Function ψ(r,t)

�
, which is

interpreted, in its turn, as an objective physical wave. It is
symptomatic, to be sure, that no objection was ever raised
about the consistency of these "quantum trajectories" with
the uncertainty principle. Ref. [32] is one of the few
Bohmian works admitting that while "it is impossible to
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accurately determine the true path pursued by a quantum
particle", the hydrodynamic streamlines provide, at least, a
non-disturbing (i.e. "uncertainty respecting") tool to
understand their topology. A parallel Bohmian "route",
started in Refs. [24-25], directly interprets Bohm's equation
system, indeed, as the hydrodynamical description of an
objective "probability fluid", and its streamlines as the
"quantum trajectories" of a discretized set of small fluid
particles, somewhat playing the role of wave-packets in
SQM.
In the case of a system of N particles, Bohm's theory makes
use of a set of N guidance equations of the form (14), non-
locally coupled, thanks to Eq. (8'), by the Wave Function of
the whole system, depending on all the N particles at the
same time. In Bohm’s words [18], “ the guidance conditions
and the Quantum Potential depend on the state of the whole
system in a way that cannot be expressed as a preassigned
interaction between its parts. As a result there can arise a
new feature of objective wholeness. This (…) follows from
the fact that the entire system of particles is organized by a
common “pool of active information” which does not
belong to the set of particles but which, from the very
outset, belongs to the whole”.

 IV.  THE “CLASSICAL” CONNECTION: THE
WAVE POTENTIAL “ROUTE”

An approach [33-37] centered on a point-particle particle
model (and avoiding therefore the conceptual difficulties of
a wave-packet representation) has recently stressed that a
full exploitation of the time-independent Schrödinger
equation could provide a straightforward wave-dynamical
extension of classical Mechanics. The starting point was the
observation that any wave described by a Helmholtz-like
equation may be treated in terms of a Hamiltonian set of
exact ray-trajectories (bypassing any quasi-optical
approximation) mutually coupled by a monochromatic,
dispersive function (called "Wave Potential"), encoded in
the structure itself of the Helmholtz equation and acting
normally to the ray-trajectories. The Helmholtz-like
structure of the time-independent Schrödinger's equation
suggests therefore to apply the same method to the
determination of the exact, trajectory-based single-particle
dynamics, ruled by a suitable mono-energetic Wave
Potential. The fact of acting normally to the relevant
particle trajectories (a property of which the Bohmian
Quantum Potential (13), because of its composite structure,
cannot enjoy) allows to view diffraction and interference as
energy-preserving exchanges between the longitudinal and
transversal components of the particle momentum. The
exact point-particle dynamics allowed by the time-
independent Schrödinger may be accompanied by a

statistical treatment based on the coefficients 
2

nc of the

solution (10) of the time-dependent equation, more or less

like Classical Statistical Mechanics is based on Classical
Dynamics.
By replacing (3) into (6) and separating real and imaginary
parts, the time-independent Schrödinger equation (6) may
be shown, in fact, to be structurally associated with a self-
contained Hamiltonian set of exact single-particle trajectory
equations of the form

(17)

(18)

(15)

  (16)

 

2

2

0

0

0

pd r H
=

d t p m
d p H

= - - [V(r)+Q(r,E)]
d t r

(R p)=

p(t= )= 2 m E

≡

≡ ∇

∇
≡ π λ











∂
∂

∂
∂

⋅

��

�

� � � �
�

� �

ℏ

where no simultaneous solution of the time-dependent
Schrödinger equation is required, and

2p
H(r, p,E) +V(r)+Q(r,E)= E

2m
≡� � � �

(19)

22 R(r,E)
Q(r,E)= -

2m R(r,E)
∇ �

� ℏ
� . (20)

The time-independent, energy-dependent function Q(r,E)
�

,

which we call "Wave Potential", turns out to couple
together all the relevant particle trajectories, and it may be
shown, as a consequence of Eq. (17), that the wave
amplitude R(r,E)

�
 and its functions are distributed over the

relevant wave-fronts, so that   Q(r,E)= 0p ∇•
� ��

. The Wave

Potential Q(r,E)
�

 doesn't cause therefore any wave-particle

energy exchange: a property of which the Bohmian time-
dependent "Quantum Potential" ( , )

B
Q r t
�

 (13), involving

the full set of eigen-energies and eigen-functions, cannot
enjoy, in spite of the formal coincidence between Eqs. (13)
and (20). The two "Potentials" refer indeed to different
(point-like and wave-packet, respectively) particle
representations.
In apparent violation of the uncertainty principle (but, in
effect, as a simple result [37] of having avoided any wave-
packet particle model) the dynamical system (15)-(18) may
be time-integrated by assigning the launching values

( , )E = 0r t
�

 and ( , )E = 0p t
�

 of the particle positions and

momenta, together with the wave amplitude distribution
R(r,E,t =0)
�

 over a launching surface. The numerical

time-integration provides the evolution, step by step, of
( , )Er t
�

 and ( , )Ep t
�

, i.e. a full description of the point-

particle motion along an exact stationary set of trajectories
coupled by the Wave Potential, in the frame of a wave-like
stationary phenomenon (pervading in principle the entire
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physical space) where the omission of the Wave Potential
would reduce the Hamiltonian system (15)-(18) to the
eikonal approximation [7] of matter waves, i.e. to Classical
Dynamics.
A number of examples of exact single particle trajectories
obtained in complete agreement with Schrödinger’s
equations are given now by means of the numerical
solution of the Hamiltonian equations (15)-(18), performed
by assuming, for simplicity sake, a geometry allowing to
limit the computation to the (x, z)-plane, where both
R(r,E)
�

 and its functions satisfy over any wave-front,

thanks to Eq. (17), the relation ( )/ /x zz p p x∂ ∂ = − ∂ ∂ .

By expressing the space coordinates x and z in terms of the
half-width 0w  of the starting slit, Fig. 1 presents, to begin

with, the diffraction of a Gaussian matter wave beam
launched along the z-axis with

x(t = 0)= 0p ; z(t = 0)= 2mEp , in the absence of

external fields (i.e. for V(x,z)= 0), in the form
2

0∝ 2R(x;z = 0) exp(- x / w ) , starting from a vertical slit

(with half-width 0 0w > λ ) centered at 0x= z = . In order

to fix ideas, we refer to a case of cold neutron diffraction
with

-4 -4
0 0 0 0λ = 19×10 µm, w = 11.5µm,ε λ / w 1.65×10≡ ≅ .

We plotted on the right-hand side the initial and final
transverse intensity distributions of the beam, and on the
left-hand side the relevant ray-trajectory pattern. The
diffractive process due to the Wave Potential consists of the
beam gradual widening, obtained by converting a part of its
longitudinal momentum into the perpendicular component,
while preserving the total kinetic energy.
The two heavy lines represent the trajectories starting (at

0z = ) from the so-called "waist" positions 0x / w = ±1 ,

whose numerical values turn out to be in excellent
agreement with their well-known paraxial analytical
expression

2

2
1

0

0 0

zx

w w

λ
π
 

= ± +   
 

. (21)

FIG.1. Diffraction of a Gaussian matter wave beam.

Fig. 2 refers to the diffraction/interference case of two
neighbouring Gaussian coherent wave beams of the

form
0

( 2
]±∝x; z = 0 1.4

x
R( )

w
exp[- ) . We plotted on the

right-hand side the initial and final transverse intensity
distributions of the beams, and on the left-hand side the
relevant ray-trajectory pattern.

FIG.2.  The case of two neighbouring Gaussians coherent beams.

FIG.3.  Gaussian beam launched against a constant field ozF− .

Fig. 3 shows, in its turn, the launch, stopping and
"backward fall" of the same beam of Fig. 1, traveling in an
external potential field of the form ( ) ozV V z F z≡ = , i.e.

under a constant force field ozF−  acting in the negative z-

direction.
Starting from z=0, the beam travels, for a while, in the

positive z direction; when / ozE Fz ≅  it's stopped by the

force field, and "falls back" (while continuing its diffractive
widening due to the Wave Potential, and therefore limiting
itself to an energy-preserving exchange between px and pz)
towards the starting position.

Referring now to:

1)  a stationary potential barrier of the Gaussian form

( ) 2 2
0 GV V z V exp [-2 (z - z ) / d ]= = , (22)
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(where G 0z = 10000 w  is the position of the peak, and

0d = 5000 w  is the distance between the flexes), and to

2)  a logistic (step-like) stationary potential function of
the form

{ }-1
L

0
0

z - z
V =V(z)=V 1+exp[-α

w
] , (23)

where the parameters α= 0.002 and /L 0z w = 10000

determine, respectively, the slope and the flex position of
the continuous line connecting the two asymptotic levels
where ( )V z = 0→ − ∞  and ( ) 0V z V→ ∞ = , we plot in

Fig. 4 the respective ratios ( ) / 0V z V , and "launch" (from

the left hand side) the same beam of Figs. 1 and 3, with
total energy E, into these external fields.

FIG.4.  (a) Gaussian and (b) step-like ratios ( ) / 0V z V .

In the case (Figs. 5-7) of the potential barrier (22), the
beam gradually widens under the action of the Wave
Potential, and is stopped and thrown back, at a z-position
lower than Gz  where 0E =V(z)<V . We omit, for brevity

sake, the relevant trajectory plot, because of its similarity
with Fig. 3.

The most interesting plots are obtained for / 0E V 1≅ . Both

when the beam is stopped and thrown back, just before

Gz z= , for a value of 0E / V  just below 1 (Fig. 5), and

when the beam overcomes the potential barrier for a value
of 0E / V  just above 1 (Fig. 6), the beam particles spend a

part of their time in a narrow region close to the position

Gz z= , where both the external force ( )zF z  and zp  are

very close to zero.
 In these conditions the dominant role is played by the
Wave Potential, causing a strong transverse widening of the
beam, which is progressively accelerated for Gz z> . We

finally show in Fig. 7 the case 0E / V >> 1 , where the

beam overcomes the top of the barrier and undergoes a
strong acceleration beyond it.

FIG.5.  Potential barrier: case 0E / V  just below 1.

FIG.6.  Potential barrier: case 0E / V  just above 1.

FIG.7.  Potential barrier: case 0E / V 1>> .

In the case (Figs. 8-10) of the step-like potential (23), the
discussion is quite similar to the one performed for the
potential barrier, presenting however a few peculiar
differences.
The beam gradually widens under the action of the Wave
Potential, and is stopped and thrown back, for

0E =V(z)<V  with a behavior (quite analogous to the one

of Fig. 3) whose plot we omit here, once more, for brevity
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sake. Once again, the most interesting plots are obtained for

/ 1
0

E V ≅ .

FIG.8.  Step-like potential: case 0E / V  just below 1.

FIG.9.  Step-like potential: case 0E / V  just above 1.

FIG.10.  Step-like potential: case 0E / V 1>> .

Both in Fig. 8 (beam stopped and thrown back for a value
of 0E / V  just below 1) and Fig. 9 (beam overcoming the

potential step for a value of 0E / V  just above 1) the beam

particles spend a part of their time in a narrow region
around a position (close to the top of the step) where both
the external force ( )zF z  and zp  are very close to zero, and

the dominant role is played, once more, by the Wave
Potential, causing a strong transverse widening of the beam.
The main differences from the previous case stand in the
fact that while particles reaching the top of the potential

barrier with 
z

p 0≅  receive, from there on, a positive

forward push, particles getting the top of the step function

with 
z

p 0≅  are (and remain) endowed with a basically

transverse momentum. The beam doesn't meet a further
force field, and widens under the action of the Wave
Potential alone: a behavior which goes on, in  Fig. 10,
for 0E / V >> 1 .

Let us finally come to the case of particles moving in an
external stationary potential field ( , )V x z  representing a
focalizing structure. We previously recall [8, 9, 37] that, by
simply performing the replacements

2
20

02 2

2
; 2pm E V(r)

k 1- n(r)
E

→ → →
�

�

ℏ ℏ
, (24)

the time-independent Schrödinger equation (6) takes on the
form of the Helmholtz equation

2
0

2u(r) + [n(r)k ] u(r)= 0∇ � � �
(25)

holding for electromagnetic waves with 
0 0

k = 2π / λ  in a

medium with refractive index n(r)
�

, while the respective

eikonal limits transform according to the correspondence

2 2 2 2
02 m E (1-V / E)p k k n≅ ≅↔ . (26)

We assign therefore a refractive index of the form [38]

( , )
2 2

0

x z

z - Zx
n x z 1+exp - -

L L

    
 =    
    

(27)

and assume
2V(x,z) = E [1- n(x, z) ] (28)

in Eq. (16).
We present in Fig. 11 and Fig. 12 the numerical results
obtained (with a suitable choice of the parameters Lx , Lz
and Z0) for the same particle beam of Fig. 1 by neglecting
and by taking into account, respectively, the Wave Potential
term r,EQ( )

�
, whose diffractive effect is seen to replace the

point-like eikonal focus by a finite focal waist. Fig. 13
shows, in its turn, the progressive intensity sharpening of
the focused beam.
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FIG.11.  Eikonal (point-like) focusing of a Gaussian matter wave
beam.

FIG.12.  Full-wave (finite waist) focusing of a Gaussian matter
wave beam.

FIG.13.  Progressive intensity sharpening of a focused Gaussian
matter wave beam.

 V. BEYOND QUASI-OPTICS

The exact trajectory-based solutions of the Hamiltonian
system (15)-(18), presented in the previous Section for the
dynamics of point-like particles piloted by de Broglie's
monochromatic matter waves, are analogous to the ones
(concerning monochromatic electromagnetic waves)
obtained at the Institute of Plasma Physics of the C.N.R. of
Milan [38-42] by one of the Authors (AO), within the limits
of a complex-eikonal quasi-optical approximation
originally proposed in Refs. [43-44] and successfully
extended to the propagation of gyro-resonant e.m. waves
launched into magnetoactive thermonuclear plasmas for
diagnostic and/or plasma-heating purposes. A toroidal (3D)
ray-tracing code provided a satisfactory description of the
finite-waist formation and diffractive self-widening
processes affecting the transmission, reflection and
absorption of high frequency electromagnetic Gaussian
beams, in experiments of crucial interest for the beam
directivity control and for the stabilization of potentially
disruptive magnetohydrodynamic modes in fusion devices.
The quasi-optical analysis presented in Refs. [38-42] was
also applied, in more recent times [45], to the Doppler
backscattering microwave diagnostic system installed on
the Tokamak TORE SUPRA of Cadarache, waiting for the
completion of the ITER prototype of fusion reactor.
Although a quasi-optical analysis was originally applied to
the quantum case in Ref. [46], with a set of results quite
similar to the ones of Sect.IV of the present paper, any
quasi-optical approximation is avoided in the present work
by the use of the Wave Potential approach.

VII. CONCLUSION

Our present approach is characterized by a mono-energetic
"Wave Potential" function acting normally to the relevant
point-particle trajectories: a property (allowing to pilot the
particle motion without modifying its energy) which is not
shared by the Bohmian “Quantum Potential”, involving the
entire set of eigen-energies of the wave trains composing a
wave-packet.

TABLE I. Bohmian (wave-packet) trajectories

2
2

ψd r
Im ( )

d t m i ψ

i
2m

ψ
- ψ+V(r) ψ

t

∇

= ∇

=

∂
∂

��
ℏ

ℏ
ℏ

�

TABLE II. “Exact” (point-particle) trajectories

d r p
d t m

=
� �
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2 2R(r,E)

2m R(r,E)

d p
- [ V(r) ]

d t
∇= ∇

�
ℏ

�

� � �
-

2(R p )∇ =⋅
� �

0 

We summarize and compare the Bohmian and our own
approach in Tables I and II, respectively, holding for
particles moving in an external stationary potential field

( )V r
�

. It is seen, in conclusion, that:

1. the Bohmian approach provides, by means of its
“guiding equation”, a set of probability flow-lines
resulting from the entire ensemble of eigen-functions
composing a wave-packet, and built up by the
simultaneous solution of Schrödinger's time-dependent
equation, while

2. our own approach provides (by means of a set of
ordinary-looking dynamic equations encoded in
Schrödinger's time-independent equation) the exact
trajectories of point-particles with assigned energy E,

guided by the relevant (monochromatic) de Broglie's
wave.

Let us also remind that the exact, point-particle, trajectory-
based Hamiltonian equations associated with the relativistic
time-independent Klein-Gordon equation (and reducing, of
course, to eqs. (15)-(18) in the non-relativistic limit) were
obtained (by the Authors of the present paper) in Ref. [36].

Besides allowing an exact forward step with respect to the
quasi-optical approximation employed in the treatment of
classical waves, we provide, in conclusion, a consistent
wave-mechanical extension of Classical point-particle
Dynamics avoiding any wave-packet representation: a
representation, indeed, about which Born himself [47]
wrote that "it tempts us to try to interpret a particle of
matter as a wave-packet due to the superposition of a
number of wave trains. This tentative interpretation,
however, comes up against insurmountable difficulties,
since a wave-packet of this kind is in general very soon
dissipated".
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