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The starting “main road” established by de Brogle'sl Schrodinger’s discovery of matter waves antheif eigen-functions has
branched off in different “subroutes”. The most lidaccepted one is Standard Quantum Mechanics |Sidrpreting thdime-
dependentSchrddinger equation as the basic evolution lavwa efave-packetwhich represents the simultaneous probabilistic
permanence of a particle in its full set of eigatest. Another "subroute" is offered by Bohm’'s Meébsinable to reproduce the
same results of SQM, while interpreting the strdimms of the probability current density as the dgtum trajectories” of the

moving particles.

Reminding that the so-called “quasi-optical appration” represents a standard mathematical metHodiiag a first-orderay-
basedtreatment oftationarywave-like features, we present hereexactwave-mechanical “subroute”, based on the obsemvati
that thetime-independerschrodinger equation (as well as any other HeltaHiile equation) may be treated, bypassing thesigua
optical approximation, in terms of a set of raystumally coupled by a function (which we call “WavetBntial”) encoded in the
very structure of the Helmholtz equation. Theseragducing to thelassicalpoint-particletrajectories when the Wave Potential is
neglected, lend themselves to be interpreted asxhet wave-dynamical trajectories of classical-logkpoint-particlesassociated
with the de Broglie-Schrodinger matter waves. Thie @f the mono-energetic Wave Potential, actpegpendicularlyto the
relevant momentum of the moving patrticles, is tdotp them without any energy exchange: a propevhich isn’t shared by the
well-known "Quantum Potential” of the Bohmian thgdnvolving the entire spectrum of possible eigarergies of a wave-packet.
This property turns out to allow the numerical cotapion of the particle trajectories, which we penfi and discuss here for
particles moving (under the guiding rule of the Wdotential) in many different force-fields, suchaaconstant external field and
the fields due to a potential barrier, a poterdiap and a focalizing potential, respectively.

PACS: 03.75.-b, 03.65.-w, 03.65.Ta, 78.67.Lt
I. INTRODUCTION

As is well expressed in Ref. [1]tHe knowledge of
several routes and their connections is always foélwhen
traveling through the quantum territdryDifferent "routes"”
may complement each other, indeed, in differenioregyof
that territory. But from which common “main roadhadl
the routes branch off? We think that the univeysall
accepted common ground (simply called he&abe
Mechanicy) is given by:

1. de Broglie's seminal relatiorfj=hlz [2, 3], verified

develop a common language allowing a comparison (in
Sects.VI and VII) of aims, methods, interpretaticarsd
results.

IIl. WAVE MECHANICS

We shall refer, in order to fix ideas, to the cas@on-
interacting particles of mass and total energi, launched

with an initial momentump, (with p,=+2mE) into a
force field deriving from a time-independent potehfield
V(7). The classicatlynamicalbehavior of each particle is
described, as is well known [7], by the time-indegent

beyond any doubt by the Davisson-Germer experiments, s milton-Jacobi (HJ) equation

[4], and establishing, once and for all, the ohyect
reality of matter waves and the wave-particle dyali

2. the time-independentSchrddinger equation [5, 6],
bypassing (with its eigen-fuctions and eigen-valuke
heuristic prescriptions of the "old" Quantum Medkan
and

3. the time-dependentSchrédinger equation, open to a
wide spread of interpretations and developments.

Before passing to exploit, in Sect.V, a "route"oofr own
(the "Wave Potential” route), grafted on the comrimain

road" of Wave Mechanics and allowing an exact,

trajectory-based treatment of matter wave dynamies,
shall begin by a brief summary (in Sects. II-1V)tbhof this
"main road" and of its most successful "routes'af8ard
Quantum Mechanics and Bohmian Mechanics) in order t

(TSP =2m[E-V(7)] , (1)

where the basic property of the HJ functi&(rf,E) is that
the particle momentum is given by

p=0S (7,E). @)

In other words, the (time-independentjassical HJ
surfaces S(f,E)=const are perpendicular to the

momentum of the moving particles, apdot them along
stationary trajectories, according to the laws of Classical
Mechanics. Louis de Broglie, reflecting on the ansl
between the Maupertuis and Fermat variational fpies
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[2, 3, 7], was induced to associate each mateqaighe
with a suitable “matter wave” of the form

p=u(o) et = R(tw)e' 70l €)
with real amplitudeR(f,w) , real phasey(r,w) and
E=-rlow, 4
according to the basic Ansatz
p/h=0SEE)/h =k=[ ¢, (5)

an Ansatz viewing the HJ surfac&(f,E)=consl as the
phase-fronts of these matter waves, while maimgitthe
piloting role played in Classical Mechanics.
The successive step, due to Schrodinger [5, 6], beayery
simply performed [8, 9] by viewing Classical Mecham
represented here by Eq. (1), as the eikonal appation of
a suitable Helmholtz-like equation that is immeeliat
obtained, starting from Egs. (3)-(5), in the form
72u(f.E) + 2M[E -V()] u(r,E)=0 ©6)
; o , ,
which is the usual form of thetime-independent
Schrédinger equation, holding for matter waves ciased
with particles of massn moving in an externatationary
potential V(F) . This equation admits, as is well-known [8,
9], a (discrete or continuous, according to the rioauy
conditions) set of energy eigen-values and orthorab
eigen-modes, which we shall indicate
(referring for simplicity to the discrete case) tE/n and

u, (7). From Egs. (3)-(6) we get both thedinary-looking
wave equation

0%y
_ 7
32 (7

describing the dispersive character of the de Bzaghtter
waves associated with particles of total eneegyand the
relation

%y = ZE—T[E V()]

2 2m _ 2mE _ 2mi Eody _  2mi oy
O% -— V@ y=-— =-— L= -—
v h2 (_‘)l// h2 v i ho Ot h Ot
that is
2
indV = g2y, @
ot m

which is the usual form of thiéme-dependenschrédinger
equation. Anywave-like implication of Eqg. (8) (which is
not, in itself, a wave equation) is due to its ceetion with
the time-independen$chrddinger equation (6,om which

it is obtained Eqgs. (6) and (8) arise therefore from a
combined de Broglie’s and Schrddinger’'s extensidn o

respectively
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Classical Mechanics, and don't need to be assuawed's
sometimes done) as postulates.
By defining both thceeigen—frequenc:iesson =E /7 andthe

eigen-functions

l//n(r,t)z un(r_)e-icont un(?)e-i Ent/h ©)

it's a standard procedure to verify that any linear
superposition (with arbitrary constant coefficier[tr?) of

the form
v = e, v, (71, (10)
n

is a (deterministically evolving) solution of théme-
dependentchrodinger Eq. (8). Since Eg. (8)not a wave
equation the composite function (10) cannot represent an
individual wave, revealable by a single Davissom# @
experiment: it represents, in principle, collection of
individual de Broglie’'s matter waveg!/n(f,t), each one

satisfying the wave equations (6) and (7) for aprapriate
energy valuee, . Such a composite function could provide
for instance aweighted averagdaken over the eigen-
functions l//n(F,t), where the coefficientx, (in duly

normalized form) would represent either a set of
experimental results (in view of a statistical treent) or
an ad hoc mathematical assembling, in viewf the

construction of a particular “packet” of wave-train

. STANDARD QUANTUM MECHANICS

Renouncing - both because of the uncertainty griecnd
because of the energy-independence of Eq. (8) a to
classical-looking particle dynamics, Max Born preed,
for the function (10), a role [10] going much begiahat of

a simple superposition, assuming it to represeatniost
complete possible description ("Born's Wave-Fumciiomf
the physical stateof a particle whose energy is not
determined, in the form of a simultaneous permamaenc
(before observation) in its full set of eigenstatscording

to the probabilities|cn|2. Thecontinuous and deterministic

evolution of the "wave-packeti)(r,t) according to Eq. (8)

was associated to the further assumption @ifeontinuous
and probability-dominategbrocessafter interaction with a
measuring apparatus, causing ‘itollapse”into a single
eigen-state. Even thoughd generally accepted derivation
has been given to ddtgl1], this "Born Rule" led, together
with the uncertainty principle, to Standard Quantum
Mechanics (SQM), an intrinsically probabilistic a@ption

of physical reality which was widely accepted as (illar

of any further development of microphysics.

Any system ofN particles with position vectorﬁl,... ,?N is

assumed to bdescribed [8, 9] by aingle 3N-dimensional
Schrédinger equation with aingle Wave Function
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w(r,. ,TN ,1), as if theN particles were the components

of a single physical objectan Ansatz going much beyond
de Broglie's intuition of objective 3-dimensionahgle-
particle matter waves, on which both Eqgs. (6) a8)dafe
based. The relevarime-independenand time-dependent
Schrédinger equations (6) and (8) weheuristically
“extended”, respectively, in the form

hz 2 .
Y Ok yH[E-V(7,. i) Ty=0

(6)
k=1.N 2”](
and
2
. 0y h 2
gy =" 2 Dy V(i) y,  (8)
k=1.N 2mk

whereE is the total energy of the particle system, ara th
potential energy V(F,,...f,) keeps both external fields

and internal interactions into account. Eq. (6')seen to
agree with Eq. (8)if, and only if, we “extend” to

W e, ,1) the same expression (3) which was
originally conceived by de Broglie for h&ngle particle

matter wavesy = u(f,E) €' E/" | so that
i 7oV =

Ey.
ot 7

(11)

. BOHMIAM MECHANICS

The emergence of the SQM tenets wasompaniedy
de Broglie’s interpretation presented in his daaitdrhesis
[3] and byMadelung's hydrodynamic alternative [12], and
followed by Bohm's theory [13-18] (stemming from a de
Broglie's suggestion [3]), by de Broglie's returithawhis
"double-solution" proposal [19-21] and by Takabdgas
stochastic approach [22]. The most

[13-18], kept alive for many years by Holland's BJ@3],
and were mainly due to the applicative requiremenhthe

physical-chemistry community [1, 24-32]. In Bohm's
theory,a replacement of the form
pr)=REHe CEI (12)

with real R(7,t) and G(7,t), is performed into théime-

dependenSchrédinger Eq. (8), assumirig® to represent
(in the attempt to deviate as little as possiblemfrthe

Copenhagen orthodoxy) tHe probability density for
particles belonging to a statistical ensembld3]. The

replacement (12) leads to fluid-like equation system
(which we shall omit here for brevity sake) coupley a

time-dependeriQuantum Potential” term of the form

successful Schrodinger equation (8).
developments were connected with the Bohmian theory
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: (13)

depending on the entire set of eigen-fuctions meguby
the Born Wave Functiory(r;t) . The replacement (12) -

shaped on Eq. (3), i.e. on de Brogligileno-energeti@and
experimentally tested matter waves - aims at dngstie
Born Rule with plausibilityby depicting w(rit) as an
individual and objectivgphysical wave, hopefully sharing
and generalizing the same experimental evidenca&eof
Broglie's pilot waves (3), although it is not eveahe
solution of an ordinary-looking wave equation. Aading
to Ref. [27], ‘Born had an absolutely correct (...) intuition
about the meaning of the Wave Function, namely ithat
guides the particles and it determines the prohigbibf
particle positions (...). Born is close to Bohmian
mechanics

Being the computation oQB(F,t) a very hard matter (it

was built, for instance, by means of the iteraseution of

an infinite set of complex equations [26]) it isteof
bypassed, in modern Bohmian Mechanics [1, 27], by
assuming an equivalent, but more tractablguidance
equatiori of the form, suggested by de Broglie himself [3,
19-21]

o0_ 066 Ty,
dt m mi W (14)
__h yOy-yOy
2mi z//(//*

where y —=|l//|2 =R, and the analytic expression of

[JG (r,t) is obtained from Eq. (12). The time-integration of
Eq. (14) is performed by means of the feedbacktingtep
by step, of the functiong/(r,t) obtained from the

simultaneous solution of the relevartime-dependent
Recalling that the qumnti

J E% (v Oy -wly ) represents, in terms af(F,t), a
mi

probability current density [7, 8], the "guidancelacity”

d T(t)
dt

along which the probability density is transportel@7].

The resulting(t) is interpreted however as representing

the exactquantum trajectonof a single particle, piloteth

la de Broglie) by the Born Wave Functign(r,t) , which is

interpreted, in its turn, as abjectivephysical wavelt is
symptomatic, to be sure, that no objection was eased
about the consistency of these "quantum trajectordth
the uncertainty principle. Ref. [32] is one of tliew
Bohmian works admitting that whileit"is impossible to

=J/ R turns out to be directed alonth® flux lines
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accurately determine the true path pursued by antwa
particle", the hydrodynamic streamlines provide, at least,
non-disturbing (i.e. "uncertainty respecting") toab
understand their topology. A parallel Bohmian "edut
started in Refs. [24-25], directly interprets Bohmfuation
system, indeed, as the hydrodynamical descriptibm@mo
objective "probability fluid", and its streamliness the
"gquantum trajectories” of a discretized set of dnflaid
particles, somewhat playing the role of wave-paxkiet
SQM.

In the case of a system Mfparticles, Bohm's theory makes
use of a set dil guidance equations of the form (14hn-
locally coupled, thanks to Eq. (8"), by the Wave Functibn
the whole system, depending on all theparticles at the
same time. In Bohm’s word48], “the guidance conditions
and the Quantum Potential depend on the stateeoitiole
system in a way that cannot be expressed as a gigees!
interaction between its parts. As a result there eaise a
new feature of objective wholeness. This (...) fadlénom
the fact that the entire system of particles isamiged by a
common “pool of active information” which does not
belong to the set of particles but which, from trery
outset, belongs to the whble

IV. THE “CLASSICAL” CONNECTION: THE
WAVE POTENTIAL “ROUTE”

An approach [33-37] centered orpaint-particle particle
model (and avoiding therefore the conceptual diffies of

ArXiv:1604.05068v3 [quant-ph]

like Classical Statistical Mechanics is based oas€ital
Dynamics.

By replacing (3) into (6) and separating real amaginary
parts, thetime-independenSchrédinger equation (6) may
be shown, in fact, tbe structurally associated with self-
containedHamiltonian set oéxactsingle-particle trajectory
equations of the form

oH _p

di_oH _
dt op - m 15)
b= M = Avig+arE (19)
OIR p)=0 (17)
p(t=0)=wEmE_=2nh/)IO (18)

where no simultaneous solution of the time-dependent

Schrddinger equation is requirednd

H(r, p,E)= 2; +V([N+Q(r,E)=E (19)
2 2 =
Q(F,E)=- ;URFE&E)) . (20)

Thetime-independent, energy-dependfntction Q(T,E),
which we call "Wave Potential", turns out to couple

a wave-packetrepresentation) has recently stressed that atogether all the relevant particle trajectoriesd énmay be

full exploitation of the time-independentSchrédinger
equation could provide a straightforward wave-dyitain
extension of classical Mechanics. The starting {peas the
observation that any wave described by a HelmHikéz-
equation may be treated in terms of a Hamiltonienof
exact ray-trajectories (bypassing any quasi-optical
approximation) mutually coupled by a monochromatic,

dispersivefunction (called "Wave Potential"), encoded in

the structure itself of the Helmholtz equation aamting
normally to the ray-trajectories The Helmholtz-like
structure of thetime-independenSchrodinger's equation

suggests therefore to apply the same method to th

determination of thexact trajectory-basedsingle-particle
dynamics,
Potential. The fact of actingiormally to the relevant
particle trajectories (a property of which the Badam
Quantum Potential (13), because of its compositetire,
cannot enjoy) allows to view diffraction and inendnce as
energy-preserving exchanges between the longitbdimz

ruled by a suitable mono-energetic Wave

shown, as a consequence of Eqg. (17), that the wave

amplitude R(f,E) and its functions are distributed over the

relevant wave-fronts, so thap /7 Q(f,E)=0. The Wave
Potential Q(r,E) doesn't cause therefore any wave-particle
energy exchange: a property of which the Bohntiare-
dependent'Quantum Potential"QB(F,t) (13), involving
the full set of eigen-energies and eigen-functiarenot
enjoy, in spite of théormal coincidence between Egs. (13)

and (20). The two "Potentials" refer indeed to efifint
(point-like and wave-packet, respectively) particle

erepresentations.

In apparentviolation of the uncertainty principle (but
effect as a simple result [37] of having avoided any evav
packet particle model) the dynamical system (1B8)-fhay
be time-integrated by assigning the launching walue
r(E,t=0) and p (E, t=0) of the particle positions and
momenta, together with the wave amplitude distidyut

transversal components of the particle momentune Th R(f,E,t=0) over a launching surface. The numerical

exact point-particle dynamics allowed by théme-

time-integration provides the evolution, step bgpstof

independent Schrédinger may be accompanied by a F(E,t) and P(E,t), i.e. a full description of the point-

statistical treatment based on the coefficierjes|*of the
solution (10) of theime-dependen¢quation, more or less

particle motion along an exact stationary set afetrtories
coupled by the Wave Potential, in the frame of aeniike
stationary phenomenon (pervading in principle thére
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physical space) where the omission of the Wave rifiate
would reduce the Hamiltonian system (15)-(18) te th
eikonal approximation7] of matter waves, i.e. to Classical
Dynamics.

A number of examples of exact single particle tajges
obtained in complete agreement with Schrddinger's
equations are given now by means of the numerical
solution of the Hamiltonian equations (15)-(18)rfpemed
by assuming, for simplicity sake, a geometry alloyvito
limit the computation to thex, z)plane, where both
R(f,E) and its functions satisfy over any wave-front,

thanks to Eq. (17), the relatiod/dz=~-(p/p)d/ax.

By expressing the space coordinatemndz in terms of the
half-width w, of the starting slit, Fig. 1 presents, to begin
with, the diffraction of a Gaussian matter wave rhea

launched along the Z-axis with
p,(t=0)=0; p,(t=0)=+2mE, in the absence of
external fields (i.e. for V(x,2)=0), in the form

R(x;z=0) O exp(-x*/w,’), starting from a vertical slit
(with half-width wy > 45) centered atx=2z=0. In order

to fix ideas, we refer to a case of cold neutrdifratition
with

Jo=19%x10" um, wy =11.5um,e = Ao/ Wy [71.65<10™.
We plotted on the right-hand side the initial aridalff
transverse intensity distributions of the beam, andthe
left-hand side the relevant ray-trajectory pattefirhe
diffractive process due to the Wave Potential csinsif the
beam gradual widening, obtained by converting & glits
longitudinal momentum into the perpendicular congon
while preserving the total kinetic energy.

The two heavy lines represent the trajectoriestistpr(at
Z2=0) from the so-called "waist" position/wy =+1,
whose numerical values turn out to be
agreement with their well-knownparaxial analytical
expression

(21)

[
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FIG.1.Diffraction of a Gaussian matter wave beam.

Fig. 2 refers to the diffraction/interference casie two
neighbouring Gaussian coherent wave beams of the

formR(x;z=0) U expl- (111.4)2] . We plotted on the
wO

right-hand side the initial and final transversdensity

distributions of the beams, and on the left-harde ghe

relevant ray-trajectory pattern.
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FIG.2. The case of two neighbouring Gaussiansresti®eams.
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FIG.3. Gaussian beam launched against a congtthtfF,, .

Fig. 3 shows, in its turn, the launch, stopping and
"backward fall" of the same beam of Fig. 1, trawglin an
external potential field of the fornv =V(2 = F,, z, i.e.
under a constant force fieldF,, acting in the negative-

direction.
Starting fromz=0, the beam travels, for a while, in the

positive z direction; whenz LJE/ F,, it's stopped by the

force field, and "falls back" (while continuing ithffractive
widening due to the Wave Potential, and therefonitihg
itself to an energy-preserving exchange betwgemnd p,)
towards the starting position.

Referring now to:
1) a stationary potential barrier of tBaussianform

V=V(2=V\ exp[-2(z-g 3 /8 , (22)



A. Orefice, R. Giovanelli and D. Ditto

(where z; =10000w is the position of the peak, and
d = 5000wy is the distance between the flexes), and to

2) alogistic (step-like) stationary potential function of
the form

-1

V =V(z)=V, { 1+exp[-a 1t .

=4 (23)
Wo

where the parametersx=0.002 and z /w =1000C
determine, respectively, the slope and the flextiposof
the continuous line connecting the two asymptogicels
where V(z - —) =0 and V(z - «)=\,, we plot in
Fig. 4 the respective ratio®(2)/\4, and "launch” (from

the left hand side) the same beam of Figs. 1 anditB,
total energyE, into these external fields.

1

0.75

5000 10000 15000 20000

o,

FIG.4. (a) Gaussian andbj step-like ratiosv(2) /.

In the case (Figs. 5-7) of theotential barrier (22), the
beam gradually widens under the action of the Wave
Potential, and is stopped and thrown back, atpasition
lower thanz, where E=V(z)<V,. We omit, for brevity
sake, the relevant trajectory plot, because osiitslarity
with Fig. 3.

The most interesting plots are obtained EBf\, [ 1. Both
when the beam is stopped and thrown back, justréefo
z= 27, for a value ofE/\, just below 1(Fig. 5), and
when the beam overcomes the potential barrier fealae
of E/V, just above IFig. 6), the beam particles spend a
part of their time in a narrow region close to fhasition
Z= 7, where both the external fordg,(z) and p, are

very close to zero.

In these conditions the dominant role is played thy
Wave Potential, causing a strong transverse wideoirthe
beam, which is progressively accelerated o z;. We

finally show in Fig. 7 the case&/\y >>1, where the

beam overcomes the top of the barrier and undergoes
strong acceleration beyond it.

ArXiv:1604.05068v3 [quant-ph]
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FIG.5. Potential barrier: case / ;, just belowl.
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FIG.6. Potential barrier: cade / \, just abovel.
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FIG.7. Potential barrier: cage / \, >> 1.

In the case (Figs. 8-10) of tletep-like potentia(23), the
discussion is quite similar to the one performed ttee
potential barrier presenting however a few peculiar
differences.

The beam gradually widens under the action of trevéV
Potential, and is stopped and thrown back, for
E=V(z)<\, with a behavior (quite analogous to the one

of Fig. 3) whose plot we omit here, once more, doavity
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sake. Once again, the most interesting plots ataradd for
E/V, O1.
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FIG.8. Step-like potential: cade / V, just belowl.
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FIG.9. Step-like potential: case / V, just abovel.
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FIG.10. Step-like potential: cade/\, >> 1.

Both in Fig. 8 (beam stopped and thrown back feake

of E/V, just below } and Fig. 9 (beam overcoming the
potential step for a value dt /\j, just above }the beam

particles spend a part of their time in a narrowiae
around a position (close to the top of the stepgnatboth

the external forceF,(z) andp, are very close to zero, and
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the dominant role is played, once more, by the Wave
Potential, causing a strong transverse widenirthe@beam.
The main differences from the previous case stanthe
fact that while particles reaching the top of thetemtial

barrier with p, 0O receive, from there on, a positive
forward push, particles getting the top of the diapction

with p, 0O are (and remain) endowed with a basically
transverse momentum. The beam doesn't meet a ffurthe
force field, and widens under the action of the Wav
Potential alone: a behavior which goes on, in Hig,
forE/V, >>1.

Let us finally come to the case of particles movingan
external stationary potential fiel#/(x, 2 representing a

focalizing structure. We previously recgd, 9, 37 that, by
simply performing the replacements

2mE  p’ 2., VO
E

e
the time-independenBchrddinger equation (6) takes on the
form of the Helmholtz equation

nry, (24)

[72u(F) + (k] 2u(rj=0 (25)

holding for electromagnetic waves Willho =2x/ /IO in a

medium with refractive indexn(F), while the respective
eikonal limitstransform according to the correspondence

p’O02mE([1-V/E) KO k> . (26)

We assign therefore a refractive index of the f{86]

2 2
n(x, 2 = 1+ex{ E'—_Xxj {ZI-_Z j ] (27)

and assume
V(x,z) = E [1-n(x,z)*] (28)

in Eq. (16).

We present in Fig. 1Bnd Fig. 12 the numerical results
obtained (with a suitable choice of the paramelgrs L,
and Z,) for the same particle beam of Figbg neglecting
and by taking into account, respectivelye Wave Potential
term Q(f,E), whose diffractive effect is seen to replace the
point-like eikonal focus by a finite focal waistigF 13
shows, in its turn, the progressive intensity shaipg of
the focused beam.
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FIG.11. Eikonal (point-like) focusing of a Gaussiaatter wave
beam.
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FIG.12. Full-wave (finite waist) focusing of a Gaian matter
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FIG.13. Progressive intensity sharpening of a $eduGaussian
matter wave beam.
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V. BEYOND QUASI-OPTICS

The exacttrajectory-based solutions of the Hamiltonian
system (15)-(18), presented in the previous Sedtiorthe
dynamics ofpoint-like particlespiloted by de Broglie's
monochromatic matter waveare analogous to the ones
(concerning monochromatic electromagnetic wayes
obtained at the Institute of Plasma Physics ofCGhé.R. of
Milan [38-42] by one of the Authors (AO), withingHimits
of a complex-eikonal quasi-optical approximation
originally proposed in Refs. [43-44] and succesgful
extended to the propagation gyro-resonante.m. waves
launched into magnetoactivinermonuclear plasmagor
diagnostic and/or plasma-heating purposes. A taidi@D)
ray-tracing code provided a satisfactory descriptid the
finite-waist formation and diffractive self-widemn
processes affecting the transmission, reflectiond an
absorption of high frequencglectromagnetic Gaussian
beams in experiments of crucial interest for the beam
directivity control and for the stabilization of temtially
disruptive magnetohydrodynamic modes in fusion cevi
The quasi-opticalanalysis presented in Refs. [38-42] was
also applied, in more recent times [45], to the plep
backscattering microwave diagnostic system instathe
the Tokamak TORE SUPRA of Cadarache, waiting fer th
completion of the ITER prototype of fusion reactor.
Although a quasi-optical analysis was originallypkgd to
the quantum case in Ref. [46], with a set of resgitite
similar to the ones of Sect.IV of the present papery
quasi-optical approximation is avoided in the pnéseork
by the use of the Wave Potential approach.

VII. CONCLUSION

Our present approach is characterized Inyomo-energetic
"Wave Potential" function acting normally to thdereant
point-particle trajectories: a property (allowing to pilot the
particle motion without modifying its energy) whiéh not
shared by the Bohmian “Quantum Potential”, involyihe
entire set of eigen-energies of the wave trainspusgimg a
wave-packet

TABLE |. Bohmian (wave-packet) trajectories

ﬂ:i Im (5_‘/’)
t mi 7
. 61// flz 2
in 5= - Oy + V() w
t 2m
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dp_ = W O°R(T,E)
at - VO - 2m R(T,E)]
OJOR? p)=0

We summarize and compare the Bohmian and our own

approach in Tables | and I, respectively, holdifag
particles moving in an external stationary potdntiald
V(7). Itis seen, in conclusion, that:

1. the Bohmian approactprovides, by means of its
“guiding equation”, a set ofrobability flow-lines
resulting from the entire ensemble of eigen-fundio
composing awave-packet and built up by the
simultaneous solution of Schrédingetitee-dependent
equation, while

ArXiv:1604.05068v3 [quant-ph]

guided by the relevant (monochromatic) de Broglie's
wave.

Let us also remind that thexact,point-particle trajectory-
basedHamiltonian equations associated with the relstiwi
time-independenKlein-Gordonequation (and reducing, of
course, to egs. (15)-(18) in the non-relativistiit) were
obtained (by the Authors of the present paper)eh B6].

Besides allowing aexactforward step with respect to the
guasi-opticalapproximationemployed in the treatment of
classical waves, we provide, in conclusion, a consistent
wave-mechanicalextension of Classicalpoint-particle
Dynamics avoiding anywave-packetrepresentation: a
representation, indeed, about which Born himself] [4
wrote that it tempts us to try to interpret a particle of

2. our own approachprovides (by means of a set of matter as a wave-packet due to the superpositiora of
ordinary-looking dynamic equations encoded in nymber of wave trains. This tentative interpretaio
Schrodinger'stime-independentequation) theexact  nowever, comes up against insurmountable diffies|ti
trajectoriesof point-particleswith assigned energk, since a wave-packet of this kind is in general veopn
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