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The Mössbauer effect: a new theory. 
 

R. Giovanelli 

Università di Parma – Dipartimento di Fisica e Scienza delle Terra – Parma (Italy) 

 

Part 2 -- Draft 
 

Abstract – The Mössbauer effect, based on the variation in resonant absorption of 

gamma radiation (emitted partially in a very narrow wavelength interval) (Fig. 1, 2), 

reveals the energy levels of that single atom whose nucleus has absorbed a gam-

ma photon without energy loss. Bonds and states of the atoms, far from this atom 

are not revealed. The hypothesis is that the Mossbauer effect is possible thanks to 

the intervention of the energy and momentum of zero point phonons, that are pre-

sent in all the atoms of the lattice. The same intervention can happen from thermal 

phonons (n) where the probability for transitions n↔ n occurs.  Most important are 

high energy phonons, with short wavelength. No phonon is created so that the en-

ergy of the lattice is conserved with a "loan" that is returned during the time interval, 

allowed by the uncertainty principle.  A gamma quantum (the same goes for a neu-

tron) affects an atom. This atom, if it were not bound in a lattice, would recoil. But 

instead, if the atom is bound in a lattice, it would have to transfer energy and mo-

mentum to the lattice, starting from the closest atoms. This transfer occurs by cre-

ating phonons, the quanta of vibration that spread at sound velocity.  Nothing hap-

pens in the Mӧssbuaer effect. It is not true that it involves the other atoms of the lat-

tice because the phenomenon occurs even if the hit atom is in a nanoparticle that 

does not have enough mass to hide the recoil. The hit atom hosts all the zero-point 

phonons (N-1) of the lattice (N atoms).  

In order the lattice remains rigid, in the struck atom must be neutralized the impulse 

received. This can be obtained using a zero point phonon that is parked around 

him. But these zero point phonons could never be used. True, but for the uncertain-

ty principle it can be done within the time allowed. Then everything goes back to 

the way it was before, but in the meanwhile the Mössbauer effect has occurred. 

The Mӧssbauer effect shows what happens near and around the atom whose nu-

cleus have absorbed a gamma quantum. For the same atom happens a momen-

tum compensation to neutralize the pulse received. All to obey a conservation prin-

ciple in the fluctuations of the zero point phonons. But all this is just mysteriously 

encoded in the Schrӧdinger time dependent equation, as we shall see from its ana-

lytic and numeric solution for an hypothetic case. 
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1 – Introduction 
In Part 1 we have noted the existence of two important experimental results that 

make current theories about Mӧssbauer effect unacceptable, all regarding the in-

stantaneous collaboration of all the atoms of a lattice. 

1) no Mӧssbauer spectrum does a shift appear due to the recoil (Fig.1 [1]), howev-

er small is the mass of the nanoparticle that houses the atoms absorbing gamma 

photons, impulse conservation would not be respected. 

2) reducing the mass of the nanoparticles the absorption of the gamma photons is 

attenuated (the Mossbauer diagram area is reduced) even if, as we have said   

(Part 1), there is no shift by recoil even if the mass of the particle would not be able 

to hide the recoil (Fig. 1). 

  

Fig. 1 – Mössbauer spectra of 10÷20[nm] nano-

particles measured at 78 K. When the dimension is reduced the diagram area is also reduced but 

no shift of the area barycenter appears. (Gabbasov et al. [1]) 

 

In Part 2 we first examine the negative consequences caused by the belief that 

there is a sudden (and impossible) collaboration between the atoms of a lattice.  

We will then illustrate the present theory that involves the intervention of energy and 

momentum of the zero point phonons of the atom that emits or absorbs a gamma 

photons in the Mӧssbauer effect, that is shown by the above diagram (Fig. 2)      

     The appearance of the narrow line of irradiation and the same for absorption, 

(about 105 less than R ) would not have been conceivable and undetectable without 

the chance discovery of Mӧssbauer. As known, the discovery was made by cooling 

the source and the absorber in an attempt to separate radiation and absorption, 
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narrowing the two areas indicated as “phonon wing” (Fig.2). The cooling had the 

opposite effect: the absorption of gamma rays increased. 

   Fig. 2. Total gamma radiation and absorption spectra (sche-

matic). R - recoil energy   
  

Appear two unknown peaks, one in emission and one in absorption at the same wave-

length. 

We have found [2, 3] that a harmonic oscillator has a quantum “stiffness”, unknown 

and impossible in classical mechanics. But the Mӧssbauer effect does not only 

make use of a "quantum rigidity" to occur, for nanoparticles, it apparently must also 

violate the conservation of the impulse, which is impossible in both classical and 

quantum mechanics.  

The question is: how the impulse received by the nucleus, when a gamma photon 

is emitted or absorbed, is neutralized?  

In the current theory, the impulse would be transmitted to the entire mass of the lat-

tice and then "diluted" until it was not measurable.  

The proof of the impossibility of explaining the Mӧssbauer effect, with actual theory, 

is given by the examination of the gamma absorption spectra of the nanoparticles 

with an insufficient mass to justify the absence of recoil (see Part. 1, also Fig. 2 ). 

To verify the condition of insufficient mass, the Mӧssbauer spectra relating to na-

noparticles were examined. It must be remembered that the spectrum of the lattice 

oscillations of a nanoparticle is not comparable to a continuous spectrum as in a 

large solid (bulk). 

The belief, founded on the collaboration of all the atoms of the lattice, goes back to 

Mӧssbauer himself. This is an erroneous belief that, until now, no one was able to 

correct. As seen from this misconception, the Mὂssbauer effect remained a mys-

tery of physics for sixty years. Since the Mὂssbauer effect tells in great detail the 
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state of the atom whose nucleus has absorbed a quantum of gamma radiation, it 

would have been obvious to assume that the cause of the apparent rigidity of that 

nucleus where to be found in the same atom to which that nucleus belongs. But 

what we find in an atom, inserted in a lattice, to give this “quantum rigidity”? 
 

2 - Zero point phonons in nanoparticles 
 The study of nanoparticles was the basis of the critique of the current theory re-
garding the Mossbauer effect. We resume the study of nanoparticles: 
It is well known that the vibrational density of states (DOS) forms a continuous 
band in bulk solids, and at low energies is well described by the Debye law. 
However, in small crystals the finite size leads to a discretization of the phonon 
spectrum. This is strongly manifested at low frequencies where the separation be-
tween modes may become larger than their width, and no modes exist below the 
lowest vibrational frequency (Fig.3). 

Fig. 3 - A nanoparticle of diam-

eter d, in which the speed of sound is v, has no oscillation frequencies lower than ωmin. Obvious-
ly this spectrum of possible frequencies is also the spectrum of the real zero point oscillations 
present in all the atoms of the nanoparticle. 
 

We shall refer to the frequency ωmin of the lowest vibrational mode as the acoustic 

„gap‟. The density of frequency ϱ(ω) in discrete form is given by: 

 

 ϱ(ω)=∑3Nω
2
/(ωD

3
-ω

3
min), where ϱ(ω) is the density of states versus the  

                n=1 

frequency ω. 
A spherical nanoparticle of diameter d cannot support internal vibrations at fre-
quencies less than about 2πv/d, where v is a characteristic bulk sound velocity 
(Fig. 3). Any property of the nanoparticle that depends on the vibrational spectrum, 
such as its thermodynamic properties or electron-phonon dynamics, will be very dif-
ferent at low energies than in bulk crystals. This will be especially true for nanopar-
ticles only weakly coupled to their surroundings. 
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The phonon emission rate at frequencies less than that of the lowest internal vibra-

tional mode, i.e., in the acoustic „gap‟ (0 - ωmin) is zero. In small crystals the finite 

size leads to a discretization of the phonon spectrum (Fig. 3). This is strongly mani-

fested at low frequencies where the separation between modes may become larger 

than their width, and no modes exist below the lowest vibrational frequency ωmin. 

The discrete DOS is expected to change dramatically many physical processes in-

volving low frequency phonons, but are not changed the properties at high fre-

quencies that are supposed to be the possible cause of Mὂssbauer effect.  The hy-

pothesis is made that an impulse does not create phonons, mainly thanks to the in-

tervention of the momentum of the zero point high frequency phonons, that exists 

in bulk and in nanoparticles. If we reduce the mass of the crystal, thus reducing the 

number N of the atoms it contains, we will have fewer frequencies ((N-1) zero-point 

frequencies for each atom) of the crystal. The consequence is a reduction in the 

probability of elastic emission/absorption (Fig. 1, 3), which however will also occur 

with a lattice composed of a single atom, linked to a large mass (physical model of 

Fig. 4) and therefore with a single oscillation frequency (but only for collinear 

pulse). 
 

3 - New Theory 
Subtle is the Lord…..  Really, until now, we do not know the physical mecha-

nism that explains the Mὂssbauer effect. Indeed, from the beginning it was errone-

ously thought that there was the collaboration of all the atoms of the lattice. 

"Subtle is the Lord" Einstein said. But in the Mὂssbauer effect, the Lord was more 

subtle than usual. First of all the poor fancy of Mὂssbauer himself intervened and 

secondly the fact that the zero-point phonons, N-1 for each atom of the lattice (with 

N atoms) and all “parked” in each atom of the lattice, intervene not with their mass, 

but for their contribution to generating the dense zero point phonons spectrum. This 

concept was criticized [4].  

In addition to the transition probability P0-0, which is very high at low energies    

(Fig. 5 ), we must not neglect the transition probabilities Pn-n, that prevent the gen-

eration of new phonons even at temperatures higher than 0 K. For high N the spec-

trum of phonons is continuous, therefore also the Mὂssbauer effect is stronger, but 

experimentally it also occurs for N so low (nanoparticles) that the recoil shouldn‟t 

be not negligible, but it never appears (see Part 1).  

Failure to understand the true nature of the Mὂssbauer effect was the cause of 

over sixty years of senseless research on the attempt to reveal low-energy neutri-

nos that arise with the decay of Tritium, as we shall see in a later paper. 
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In small crystals the finite size leads to a discretization of the phonon spectrum. 

This is strongly manifested at low frequencies where the separation between 

modes may become larger than their width, and no modes exist below the lowest 

vibrational frequency ωmin. The discrete DOS is expected to change many physical 

processes involving low frequency phonons, but the properties due to the high fre-

quency phonons, as the interactions with a sudden pulse, are not changed (i. e. the 

interaction with gamma quantum mechanical pulse). 

      
Fig. 4 The mass M is linked to the rigid structure A       Fig. 5 Probability of no transaction 

with an elastic constraint k. The Imp is the impulse of      for levels: 0,1, 2, versus the energy 

the gamma quantum. PƔ is the impulse received by        ratio Ԑ = Ec/ћωc. (see eq.(18)) 

the mass M of the atom. Everything is at a tempera-  

ture of 0K, so there are no thermal phonons, at the  

beginning: m = 0. [2]  
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It is well known that the vibrational density of states (DOS) forms a continuous 

band in bulk solids, and at low energies is well described by the Debye law.  

So all the zero point phonons for all possible frequencies of the entire lattice are 

present simultaneously in all atoms of the lattice. In the time interval allowed by the 

uncertainty principle, these zero point phonons can oscillate in order to cancel an 

external pulse located in an atom of the lattice.  

So the mass M oscillates with only one frequency. By solving [2, 3] the time de-

pendent Schrӧdinger equation for the mass M, we will find that it has the Mӧssbau-

er effect that therefore already seems to be contained in the heart of Quantum Me-

chanics. 

Our model (Fig. 4) consists of a single atom prompted by a mechanical pulse Imp = 

FxDt , equal to the pulse PƔ of a radiated or absorbed gamma quantum. It turns out 

that the result has a strong analogy with the Mössbauer effect (results of numerical 

calculations are represented in Fig. 6a, 6b). A mass M is connected with a hypo-

thetical rigid mass A, to which is linked by an elastic bond, a potential V(x), which 

does not depend on time. The mass M, equal to the mass of a 57Fe atom, will have 

only one oscillation frequency (which corresponds approximately to the maximum 

frequency in a solid composed of N atoms of Fe).  

PƔ = 0.775٠10
-18

 [g٠cm/s] = Imp. (gamma quantum pulse) 

But in the quantic world there exists another momentum that cannot be eliminated. 

It is originated by atoms zero point motion: P0  is the phonon zero point momentum 

(we are interested in the phonon with higher value). This momentum P0 can be 

comparable with the recoil momentum: PR = ER /cs [where ER=EƔ/(2Mc
2
), ER is 

the recoil energy, EƔ is the gamma quantum energy, M is the atom mass, c is the light velocity, 

cs is the sound velocity in the lattice], but until now the momentum P0 is considered not 

at disposal to perform anything. 
 

4 – Exact analytical solutions of the Schrödinger equation [2, 3]. 
The details of the analytical solution were carried out by Prof. Adriano Orefice [3].  

Let us consider the case of a unidimensional harmonic oscillator of mass M, submitted to a 

space-independent force F(t) of arbitrary strength (Fig. 4). Such a force could represent, for in-

stance, either a long range interaction, or a sudden absorption, emission or scattering process.  

The classical differential equation for this problem is obviously of the following form: 

 

                                 M·d2/dx2 + k·xc = F(t)                                    (1) 

Exact (non-perturbative) solutions of the Schrödinger equation corresponding to the quantum 

version of this problem: 
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were ψ(x) is the probability density. The solution of (2) was obtained almost half a century ago by 

Kerner [2] in a paper which did not obtain the diffusion it deserved.  We shall give a somewhat 

modified version of such a procedure [3]. 

Starting from a quantum stationary state of the oscillator for  F(t) = 0, its energy: 

               
M

k
with,)m(W ccm  

2

1
   and m  =  0,1,2,…          (3) 

is assumed to be known, so that the time at which this energy has been measured is totally in-

determined. The closest classical case is that of an oscillator with a known total energy  ETOT = 

Wm and a completely undetermined space position within the range   xo,  with:  

k

E
x TOT

o

2
 .  The classical probability dP for the oscillator to be found in the space interval dx 

is given by the relation: 
22

1

xxdx

dP

o 





  (4). In the quantum case, the possible stationary 

probability distributions are given by the relation: 
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  (6)  and the functions Hm are Hermite polynomials. In any 

case, as long as no force is applied, the center of the probability distribution ψ is placed at xc = 0,  

with .x c 0  dxc/dt =0. Following the basic idea to “couple” the quantum solution, when an arbi-

trary force  F(t) is applied, to the corresponding classical trajectory xc (t) of such a center, ob-

tained from eq.(1) we use the procedure of ref. [5]. The function Ψm(x,t) shall be: 

])xx(exp[)]xx([H
t

]tWdt)t(xxM[
i

expN)t,x( ccmmcmm
2

2

2
0

 
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












 


     (14) 

When the force applied F(t) is zero, the solution (14) evolves in strict association with the classi-

cal motion xc(t), whose general form is provided, for instance, in Ref.[3]. Eq.(14) shows then, in 

Kerner‟s words [2], that “the oscillator dances a quantum dance centered at the instantaneous 

classical position”. The general solution (14) may be expressed in terms of the ortho-normal set 

of eigen-solutions of the unperturbed quantum oscillator: 
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where an asterisk (*) labels a complex conjugation. The term: )()t( c
xM

c
xk

c 2

2

2

2
1







  (18)  

represents the total energy reached by the classical oscillator at the time t, divided by the quan-

tum energy c . According to the solution (14) the oscillator, starting from an unperturbed sta-

tionary state m with: 000  )t(x)t(x cc
 , progressively develops, under the influence of the 

force  F(t), the probability (assuming n  m): 

 Pmn (t) =Amn(t)
2 =

2

2
)]t([L)

)t(
exp(

mn
m

mn)]t([
!n

!m



   (22)     to be found in any state n (pos-

sibly, but not necessarily, coinciding with the initial one).   

Pmm (t) =
2

)]t([m
)t( Le 

, (23) since the associate Laguerre polynomial Lm
o reduces to a 

standard Laguerre polynomial Lm. 

             
Fig.6a; For 57Fe probability density ψm during and after the pulse: Impg = Eg/c  for 57Fe represented in 

the space: L=2,0x5.2917·10-9[cm]. In insect are represnted the probabiliies (between 0 and 1) that after 

the pulse Ig, n have the vales 0,1,…10. 

 

Sudden elastic processes undergone by a single oscillator 
The general solution (14) may be applied to the particular case of an impulsive strong perturba-

tion of a single oscillator, by assuming that a constant force  F  of arbitrary strength is exerted for 
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a very short time  <<
c

2
, as it is quite plausible in view of emission, absorption or scattering 

processes. The total energy, Ec , delivered to a classical oscillator starting from: 

 000  )t(x)t(x cc
 ,  is given by:  

M

)F(
EC

2

2
   (24)  

Fig. 6b. For 119Sn  probability density ψm during and after the pulse: Impg = Eg/c  for 119Sn rep-

resented in the volume: L=2,0x5.2917·10-9[cm]; t = 4.8361685x2.41884·10-17 =1.16979·10-16[s] 

 

Assuming, for simplicity sake, that the oscillator, submitted to such a shock, has no time to sub-

stantially change its initial position xc = 0, we may employ the solution (14) with: 

tsin
k

E
)t(x c

C

c 
2

  (25), tcos
M

E
)t(x c

C

c 
2

  (26), tcsin
E

c

t
o

Cdt)t( 


 2
2

  , (27) 

and make use of the transition probability (22) with: 
c

CE





 .  The effect of the shock is that of 

causing a classically oscillating probability distribution, as was also accounted (in the limited case 

of m = 0 ) by Schiff [6]. Such an oscillating distribution is a superposition of all the stationary 

states of the unperturbed oscillator. The probability, in particular, for the oscillator to remain in its 
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initial state m is obtained from eq.(23) in the for    Pmm = 

2

)L)exp(

c

(m

c

CC EE

 
 ,  (28) By 

plotting Pmm  versus  
c

CE





   it may be verified that it exhibits, for  > 1,   m  not negligible max-

ima, shown in Fig. 5, which no perturbative approach (with  <<1) may predict, although values of  

  even much greater than unity are currently encountered in the family of elastic processes we 

are considering here.  

])xx(exp[)]xx([H
t

]tWdt)t(xxM[
i

expN)t,x( ccmmcmm
2

2

2
0

 















 


  (14) 

 
From [7] the probability f that Mӧssbauer effect occurs is:  

f ≈ exp[-3ER/(2kB·θ)(1+2·(πT/θ)2/3)],  

Where θ is the Debye temperature.  For T=0 becomes: f ≈ exp[-3ER/(2kB·θ)] = Mf,  

that is reported in Fig. 6a, 6b. 

In the Debye model and at zero degree Kelvin temperature, the recoil free fraction 

is given by: DWT=0K ≈ exp[-ER x 3/2]. This is indicated in Fig.6a, 6b  as Wf                  

 

5 - Zero point phonons: energy and momentum 
This model (Fig. 4) shows a "stiffness" slightly higher than that predicted by the 
Debye-Waller theory applied to a solid (bulk), for which  f = DW = 0.929, (at zero K) 
while from the calculation with the model of Fig. 4 with a single atom we have:    
DW = 0.95. This model is not physically feasible but reveals that a single atom, with 
a single oscillation frequency, bound by a potential V(x), which does not depend on 
time, has the Mӧssbauer effect. In reality, every atom that emits or absorbs a 
gamma quantum in a lattice is bound to a potential that is also a function of time: 
V(r, t). The propagation of the anchoring of the potential would obviously proceed 
with "acoustic" speed in such long times that the time dependence of the potential 
V is irrelevant.  
Another problem arises when the solid, which should anchor the atom that absorbs 
the gamma quantum, is a nanoparticle, which should recoil, with an effect strong 
enough to be detected in the same Mössbauer spectrum. (see Part 1)  
In the model adopted in our calculation (Fig. 4), the atom (with mass M), hit by a 
pulse Imp , is bound to a very large mass A, which with the Mӧssbauer effect not on-
ly does not absorb energy in vibrational levels (phonons created are the same en-
visaged by the Debye-Waller formula) but neither seems to recoil if in place of 
mass A we have the mass of a nanoparticle.. Seems that the nanoparticle does not 
receive translational energy.  
The whole nanoparticle does not even seem to recoil as a whole. 
 In Fig. 4 we see a single atom, elastically bonded to a large mass A and we can 
only ascertain that at 0 K (results in Fig. 6a, 6b) we have probability 1 for n=0, the 
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other n= 1, 2, 3 are zero)  before apply the gamma pulse. After the pulse is applied 
we represents the numerical calculation result.  
We do not know what happens if the mass A, to which it is anchored (elastically) 
the single atom, is not large enough to cancel the recoil. The "rigidity", already pre-
sent in the solutions of the Schrӧdinger equation, is seen to arise a rigidity that 
even leads to the disappearance of the recoil. [8]  
The analysis, carried out on the single atom model, leads to the result that the 
Mӧssbauer effect occurs also with a single atom which is the seat of a single zero 
point phonon. So the Mӧssbauer effect is already described by the time dependent 
Schrödinger equation. The conclusion is:  

the Mӧssbauer effect derives exclusively from the phonons 
"parked" in the same atom of the lattice in which the effect occurs. 
The highest probability of not creating phonons is P0_0 (Fig. 5). Even for phonons 
with n> 0, for low energy transfer (Ԑ), there is a non-zero probability that a transition 
occurs that does not create thermal phonons (Pn_n >0). 
The recoil of the entire nanoparticle can be covered by the Heisenberg uncertainty 
time. The existence of the Mӧssbauer effect, even in nanoparticles with a mass 
lower than that necessary to mask the recoil (see Part 1), as already mentioned, 
removes any validity from any theory based on the "solidarity" of the whole lattice 
around the atom that undergoes a "mechanical impulse" either by emission or ab-
sorption of a gamma quantum. 

 

6 - Zero point momentum and energy for a single oscillator 
 All oscillators, in the quantum description, have a zero point energy. In very fast 
transient phenomena, zero point energy can occur in the time intervals covered by 
the uncertainty principle.  For a single oscillator, the energy E is: 

 

  E=ω٠ћ٠(n+½),      (29)     
 

The density of states is: ρ(ω) = B (ω
2
/ ω

3
D) 

where n is the average number of (thermal) phonons present. n depends on the 
temperature, while the angular frequency ω is the maximum frequency typical of 
the single classical oscillator and applies: ω = (k/m)1/2. For a single, isolated oscil-
lator we have only one angular frequency ω. The number n of phonons (from [2]) 
be present in the oscillator for the frequency ω is given by: 

 

n(ω,T) = 1/(e
(ћω/KT) 

-1)    (30),   where K is the Boltzmann constant. For T→0:  n→0 

 

Ej, T=0 = ωj٠ћ٠(½), energy of quantum oscillator.       
 

This quantum model applies to any oscillation in the atomic field. It is valid both for 
the oscillations that involve the atom in the lattice and for the oscillations inside the 
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atom up to those inside the nucleus. In particular, for a lattice of N atoms, N-1 dif-
ferent oscillations are possible, with different frequencies, from the lowest ones 
that involve the far atoms, up to the highest ones involving only 2 contiguous at-
oms. In this case the vibration energy of the i-th atom will be given by the sum of 
all N-1 possible frequencies: 

      j=N-1 

Ei =Σj ωj٠ћ٠(nj(ωj,T) + ½)      (31)   
           j=1 

The total vibrational energy Et of the lattice is given by the sum of the energy of the 
i-th atom, where all the zero-point N -1 oscillations (phonons) are present:  

E0,i  = Σ(j=2,. ..N-1)  [ωj٠ћ٠(½)]  energy of N - 1 zero-point phonons      

Et = Σ(i=1,…N-1) E0, i                      (32)  

Thus each lattice atom will accommodate all N zero point oscillations at all the lattice frequencies 

ωj. For temperatures below the temperature of Debye we will have a region where the zero point 

energy is higher than that due to the (thermal) phonons  

For Yong Yang et al.: “Characterization of Zero-point Vibration in One-Component 
Crystals” [10] the magnitude of zero-point vibration in one-component crystals, 
whose constituent atoms share the same bonding geometry, prove the existence of 
a characteristic temperature, T0, at which the magnitude of zero-point vibrations 
equals to that of the excited vibrations. Within the Debye model T0 is found to be 
~1/3 of the Debye temperature. The results are demonstrated in realistic systems. 
T0 ≈ TD·1/3. 

 Fig. 7. At 317  Kelvin degree thermic pho-

nons energy is equal to energy of zero point phonons for 57Fe. 

 T0 ≈ Td (2/3) [10] Vertical arbitrary units. E0 zero point energy = 58.3. Debye temperature         

TD = 467 [°K]. (1) is the constant diagram of zero point phonons (eq.31). (2) is the diagram of 
thermal phonons (eq.30).   For the crystals whose constituent atoms share the same bonding 
geometry, was proved the existence of a characteristic temperature, T0, at which the magnitude 
of zero-point vibrations equals to that of the excited vibrations by thermal phonons. Within the 
Debye model T0 is found to be ~1/3 of the Debye temperature TD. The results are demonstrated 

in realistic systems [10]. 
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“…exists a characteristic temperature T0, at which the mean square displacement 
(MSD) of zero-point and excited vibrations has equal magnitude. Below T0 the ze-
ro-point vibration is dominant over the excited vibrations. Within the Debye model, 
we obtain a simple relation between T0 and the Debye temperature.” 
 

About the relevance of zero-point phonons it is interesting to read: “Characteriza-
tion of Zero-point Vibration in One-Component Crystals”[10], that show the magni-
tude of zero-point vibration in one-component  crystals. For the crystals whose 
constituent atoms share the same bonding geometry, we prove the existence of a 
characteristic temperature, T0, at which the magnitude of zero-point vibrations dis-
placement equals to that of the excited vibrations. Within the Debye model T0 is 
found to be ~1/3 of the Debye temperature TD.  
 

7) The Heisenberg uncertainty 
The attempt to invoke the Heisenberg uncertainty principle to give an explanation 

of the Mössbauer effect has rarely been made. An attempt at explanation in this di-

rection was tempted by H.-D. Pfannes et al. [9]. But the conclusions are unclear: 

«The Mössbauer effect is based on the "recoilless" absorption and emission of low 

energy (E0=10÷100 keV) gamma-photons in solids. A simple explanation for this 

effect relies on the Heisenberg uncertainty relation: the uncertainty in momen-

tum of bound atoms is: Dp ≥ ћ/Dx. Where uncertainty in momentum Dp is of the 

order of 10-23 [kg·m·s-1]. The uncertainty in position is Dx  (Dx = 0.1 Å) but the recoil 

moment of e.g. a gamma photon with energy E0=10 [keV] is smaller 

(Dp ≥ 5·10-24 [kg·m·s-1]), i.e. the recoil which eventually can excite vibrations (pho-

nons) of the emitting atom sometimes may not be measurable.» Pfannes [9] con-

tinues, following the current theory, saying: «The recoil is then transmitted to the 

crystal as a whole and since the mass of the crystal is much greater than the atom-

ic mass it does not alter the gamma-energy (“recoilless” emission). … when the 

lifetime t of the excited Mössbauer energy level is longer (e.g. t = 10-7s) than a pe-

riod T of vibration (phonon) frequency of the emitting or absorbing atom             

(e.g.10-13s). The atom carries out many cycles during the lifetime of the gamma 

photon and the Doppler broadening of the emitted radiation averages out. As a re-

sult a sharp line with the natural linewidth G = ћ/t at the position E0 is emitted from 

the source and nuclear resonance absorption with an energetic resolution G/E0 = 

10-13, sufficient to resolve hyperfine interactions, is possible. The above mentioned 

conditions for recoilless emission limits the Mössbauer isotopes to those isotopes 

which possess low energy nuclear g-transitions (small recoil moment), long life-

times of the excited state (hyperfine resolution), high Debye temperature (small Dx) 

and solid sources and absorbers.» 
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From this new theory we have instead: the Heinsenberg uncertainty principle en-
ters the physical nature of the phenomenon by providing a time interval (a “cover” 
of time)  Δt ≥ 3.29·10-14 [s]) for the phenomena of emission or absorption without 
the creation of phonons. In the following we employ 57Fe. 
The recoil momentum can be stopped by high energy phonons “parked” in the at-
om where Mӧssbauer effect happens   
  

Eγ = 1.44·10
4 
[eV] = 2.307·10

-8
 [erg]: Energy of gamma quantum 

From the uncertainty principle: 

Δp·Δx ≥ ћ/2 ; ΔE·Δt ≥ ћ/2 ; Δt ≥ (ћ/2)/ΔE     

ΔE = ER -  The recoil energy must be “missed”. With the period TD of an oscilla-

tion of the highest energy zero-point phonons: 

TD = 2π/ωD = 1.14·10
-13

 [s]; Debye period where ωD is the Debye frequen-

cy: ωD = KB ·TD/ћ ≈ 5.5·10
13

 [rad/s]; Debye frequency      

ΔE = ER = E
2
g/(2MFe·c

2
) ≈  2·10

-3
[eV] = 3.204·10

-15
[erg];   

Δt ≥ (ћ/2)/ER = 5.2727·10
-28

/3.204·10
-15

 = 1.6456·10
-13

[s] 

The maximum energy of zero point phonons is given by:  

Eω-max = ћ·ωD/2 = 1.055·10
-27

·6.11·10
13

/2 = 3.223·10
-14

 [erg] 

Eγ >> Eω-max ;   

On the contrary the momentum of the high energy phonons Pω and the momentum 

of gamma photon Pγ, are comparable: 

cs ≈ 5.1·10
5
 [cm/s] 

Pω = Eω/cs = 6.32·10
-20 

[g·cm/s], where cs is the sound velocity :      

Pγ = Eγ/c = 7.75·10
-19

 [g·cm/s], where c is the light velocity 

Pω < Pγ 

 

Recoil momentum PR 
 

PR ≈ ER/cs = 3.204·10
-15

/5.1·10
5
 = 6.282·10

-21
 [g·cm/s] 
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Pω >> PR ; this confrontation is wright because Pω the impulse of the zero 

point oscillations is greater than that of recoil that is transferred from the gamma 

quanta to the atom.  The gamma quantum with energy Eγ was absorbed (or emit-

ted) by the nucleus. At the moment of absorption (or emission), the recoil move-

ment of the same atom can be canceled by the zero point phonons with higher 

moment. To achieve this, it is necessary to eliminate the mechanical recoil energy. 

ER. This can happen mainly thanks to the momentum of the zero point phonons.  At 

the moment of absorption (or emission) of gamma quantum Eγ, to cancel the me-

chanical recoil, that propagates with the speed of sound cs, all the movement of the 

atom must be canceled. Therefore only the mechanical recoil energy  must be elim-

inated thanks to the momentum of the zero-point phonons: Pω > PR.  
To verify the uncertainty concerning the recoil: 

ΔE·Δt ≥ ћ/2; where: ΔE = ER 

Δt ≥ (ћ/2)/ER;  Time period at maximum frequency: T=1.14·10
-13

 [s] 

Δt ≥ 5.2727·10
-28/ 1.602·10

-14
 = 0.329·10

-13
[s];  Δt<T 

But Δt and T are comparable. We provide two clues:  

a) the momentum of the gamma photon recoil can be "stopped" 

locally by the momentum of zero point phonons. The whole 

event takes place within the time interval Δt covered by the 

uncertainty. The spontaneous intervention of zero-point pho-

nons is a new phenomenon to be analyzed.   

b) After the gamma photon has been emitted (or absorbed), the 

distribution of the zero-point phonons is re-established in a 

time covered by the uncertainty principle. 
Emission and absorption occur with the "immobilized" atoms in a 
short time interval, with the result that no localized creation of pho-
nons occurs.  
 

At this point it was a matter of conjecture that was denied by an experimental fact: 

no recoil even for particles (nano crystals) that do not have sufficient mass to ab-

sorb the recoil (Part 1). This annuls all hypotheses about the participation of a large 

number of lattice atoms to absorb the recoil energy. The main fact is that experi-

mentally the recoil has never been seen, however small the crystal was. 

A gamma photon, whose energy is close to that of absorption by resonance, must 

have a supplement of energy equal to the recoil that the atom will undergo. A pho-

ton that has exactly the same energy as the resonant must meet a "blocked" atom 

https://en.wikipedia.org/wiki/Uncertainty_principle
https://en.wikipedia.org/wiki/Uncertainty_principle
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so that it does not have to lose the ER energy, which would send it out of the reso-

nance. To realize this "block" it is necessary to cancel the recoil before it is formed. 

A sort of temporal inversion should be created that is possible within quantum me-

chanics, in the time interval allowed by the uncertainty principle. If the momentum 

associated with the energy ER is not too high it can be canceled by zero-point pho-

nons.  During the time Δt a mechanical action is necessary to maintain the atom in 

its original position. A pulse must be available in an extremely short time to block 

the recoil, but during this time, for the Heisenberg uncertainty principle, we cannot 

know what really is happening.  

The recoil is not canceled but occurs in the indetermination time interval Δt and 

therefore does not appear in the energy balance of irradiation and absorption of the 

gamma quantum. The recoil occurs after the "elastic" phenomenon has occurred. 

Therefore the quantum elastic phenomena would be the result of the temporal cov-

erage given by the uncertainty principle.  

--------------------------------------------------------- 

It remains to be discovered who absorbs, even temporarily, the momentum of the 

incoming particle or gamma quantum.  

The most plausible hypothesis is that the recoil is canceled by the momentum of 

the zero point oscillations (zero point phonons) for the natural tendency to maintain 

the initial conditions. Thus the oscillation impressed to the atom by the recoil would 

be stopped by the momentum of the zero point oscillations. This causes a tempo-

rary imbalance in these oscillations, an imbalance that disappears in the interval of 

time allowed by the uncertainty. 

 

8) - CONCLUSION 
Until now exists A Mysterious Consequence of Mӧssbauer’s Effect [11].The Mӧss-
bauer effect is a phenomenon localized in atoms whose nuclei radiate or absorb a 
quantum of gamma radiation.  In fact, in the gamma absorption spectra, only infor-
mation concerning that same single atom and nucleus appears. No evidence exists 
of a sudden solidarity of the atoms of the lattice. The solidarity, however, is impos-
sible due to lack of time. But there is another reality: the zero point phonons. These 
phonons are present in every atom. This model has been criticized for suspicion of 
divergence in the number of phonons by Gründler [4], a number that would tend to 
infinity for a very large solid. However, as far as the Mossbauer effect is concerned, 
this is a false problem. Only phonons with high momentum are of interest, those 
that concern phonons with a small wavelength and involve the atoms closest to the 
atom concerned.  The possibility remains that the momentum of the zero point 
phonons can compensate and cancel the momentum of the recoil of atom hit by 
gamma quantum emitted or absorbed.  
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